183,695 research outputs found
"Liar, Liar Pants on Fire": A New Benchmark Dataset for Fake News Detection
Automatic fake news detection is a challenging problem in deception
detection, and it has tremendous real-world political and social impacts.
However, statistical approaches to combating fake news has been dramatically
limited by the lack of labeled benchmark datasets. In this paper, we present
liar: a new, publicly available dataset for fake news detection. We collected a
decade-long, 12.8K manually labeled short statements in various contexts from
PolitiFact.com, which provides detailed analysis report and links to source
documents for each case. This dataset can be used for fact-checking research as
well. Notably, this new dataset is an order of magnitude larger than previously
largest public fake news datasets of similar type. Empirically, we investigate
automatic fake news detection based on surface-level linguistic patterns. We
have designed a novel, hybrid convolutional neural network to integrate
meta-data with text. We show that this hybrid approach can improve a text-only
deep learning model.Comment: ACL 201
Data-Driven and Deep Learning Methodology for Deceptive Advertising and Phone Scams Detection
The advance of smartphones and cellular networks boosts the need of mobile
advertising and targeted marketing. However, it also triggers the unseen
security threats. We found that the phone scams with fake calling numbers of
very short lifetime are increasingly popular and have been used to trick the
users. The harm is worldwide. On the other hand, deceptive advertising
(deceptive ads), the fake ads that tricks users to install unnecessary apps via
either alluring or daunting texts and pictures, is an emerging threat that
seriously harms the reputation of the advertiser. To counter against these two
new threats, the conventional blacklist (or whitelist) approach and the machine
learning approach with predefined features have been proven useless.
Nevertheless, due to the success of deep learning in developing the highly
intelligent program, our system can efficiently and effectively detect phone
scams and deceptive ads by taking advantage of our unified framework on deep
neural network (DNN) and convolutional neural network (CNN). The proposed
system has been deployed for operational use and the experimental results
proved the effectiveness of our proposed system. Furthermore, we keep our
research results and release experiment material on
http://DeceptiveAds.TWMAN.ORG and http://PhoneScams.TWMAN.ORG if there is any
update.Comment: 6 pages, TAAI 2017 versio
- …
