4,875 research outputs found

    Deep Face Recognition Model Compression via Knowledge Transfer and Distillation

    Full text link
    Fully convolutional networks (FCNs) have become de facto tool to achieve very high-level performance for many vision and non-vision tasks in general and face recognition in particular. Such high-level accuracies are normally obtained by very deep networks or their ensemble. However, deploying such high performing models to resource constraint devices or real-time applications is challenging. In this paper, we present a novel model compression approach based on student-teacher paradigm for face recognition applications. The proposed approach consists of training teacher FCN at bigger image resolution while student FCNs are trained at lower image resolutions than that of teacher FCN. We explored three different approaches to train student FCNs: knowledge transfer (KT), knowledge distillation (KD) and their combination. Experimental evaluation on LFW and IJB-C datasets demonstrate comparable improvements in accuracies with these approaches. Training low-resolution student FCNs from higher resolution teacher offer fourfold advantage of accelerated training, accelerated inference, reduced memory requirements and improved accuracies. We evaluated all models on IJB-C dataset and achieved state-of-the-art results on this benchmark. The teacher network and some student networks even achieved Top-1 performance on IJB-C dataset. The proposed approach is simple and hardware friendly, thus enables the deployment of high performing face recognition deep models to resource constraint devices.Comment: 7 pages, 5 figure

    Triplet Distillation for Deep Face Recognition

    Full text link
    Convolutional neural networks (CNNs) have achieved a great success in face recognition, which unfortunately comes at the cost of massive computation and storage consumption. Many compact face recognition networks are thus proposed to resolve this problem. Triplet loss is effective to further improve the performance of those compact models. However, it normally employs a fixed margin to all the samples, which neglects the informative similarity structures between different identities. In this paper, we propose an enhanced version of triplet loss, named triplet distillation, which exploits the capability of a teacher model to transfer the similarity information to a small model by adaptively varying the margin between positive and negative pairs. Experiments on LFW, AgeDB, and CPLFW datasets show the merits of our method compared to the original triplet loss.Comment: 5 pages, 2 tables, accpeted by ICML 2019 ODML-CDNNR Worksho

    ShrinkTeaNet: Million-scale Lightweight Face Recognition via Shrinking Teacher-Student Networks

    Full text link
    Large-scale face recognition in-the-wild has been recently achieved matured performance in many real work applications. However, such systems are built on GPU platforms and mostly deploy heavy deep network architectures. Given a high-performance heavy network as a teacher, this work presents a simple and elegant teacher-student learning paradigm, namely ShrinkTeaNet, to train a portable student network that has significantly fewer parameters and competitive accuracy against the teacher network. Far apart from prior teacher-student frameworks mainly focusing on accuracy and compression ratios in closed-set problems, our proposed teacher-student network is proved to be more robust against open-set problem, i.e. large-scale face recognition. In addition, this work introduces a novel Angular Distillation Loss for distilling the feature direction and the sample distributions of the teacher's hypersphere to its student. Then ShrinkTeaNet framework can efficiently guide the student's learning process with the teacher's knowledge presented in both intermediate and last stages of the feature embedding. Evaluations on LFW, CFP-FP, AgeDB, IJB-B and IJB-C Janus, and MegaFace with one million distractors have demonstrated the efficiency of the proposed approach to learn robust student networks which have satisfying accuracy and compact sizes. Our ShrinkTeaNet is able to support the light-weight architecture achieving high performance with 99.77% on LFW and 95.64% on large-scale Megaface protocols

    Correlation Congruence for Knowledge Distillation

    Full text link
    Most teacher-student frameworks based on knowledge distillation (KD) depend on a strong congruent constraint on instance level. However, they usually ignore the correlation between multiple instances, which is also valuable for knowledge transfer. In this work, we propose a new framework named correlation congruence for knowledge distillation (CCKD), which transfers not only the instance-level information, but also the correlation between instances. Furthermore, a generalized kernel method based on Taylor series expansion is proposed to better capture the correlation between instances. Empirical experiments and ablation studies on image classification tasks (including CIFAR-100, ImageNet-1K) and metric learning tasks (including ReID and Face Recognition) show that the proposed CCKD substantially outperforms the original KD and achieves state-of-the-art accuracy compared with other SOTA KD-based methods. The CCKD can be easily deployed in the majority of the teacher-student framework such as KD and hint-based learning methods

    Knowledge Squeezed Adversarial Network Compression

    Full text link
    Deep network compression has been achieved notable progress via knowledge distillation, where a teacher-student learning manner is adopted by using predetermined loss. Recently, more focuses have been transferred to employ the adversarial training to minimize the discrepancy between distributions of output from two networks. However, they always emphasize on result-oriented learning while neglecting the scheme of process-oriented learning, leading to the loss of rich information contained in the whole network pipeline. Inspired by the assumption that, the small network can not perfectly mimic a large one due to the huge gap of network scale, we propose a knowledge transfer method, involving effective intermediate supervision, under the adversarial training framework to learn the student network. To achieve powerful but highly compact intermediate information representation, the squeezed knowledge is realized by task-driven attention mechanism. Then, the transferred knowledge from teacher network could accommodate the size of student network. As a result, the proposed method integrates merits from both process-oriented and result-oriented learning. Extensive experimental results on three typical benchmark datasets, i.e., CIFAR-10, CIFAR-100, and ImageNet, demonstrate that our method achieves highly superior performances against other state-of-the-art methods

    Knowledge Distillation via Route Constrained Optimization

    Full text link
    Distillation-based learning boosts the performance of the miniaturized neural network based on the hypothesis that the representation of a teacher model can be used as structured and relatively weak supervision, and thus would be easily learned by a miniaturized model. However, we find that the representation of a converged heavy model is still a strong constraint for training a small student model, which leads to a high lower bound of congruence loss. In this work, inspired by curriculum learning we consider the knowledge distillation from the perspective of curriculum learning by routing. Instead of supervising the student model with a converged teacher model, we supervised it with some anchor points selected from the route in parameter space that the teacher model passed by, as we called route constrained optimization (RCO). We experimentally demonstrate this simple operation greatly reduces the lower bound of congruence loss for knowledge distillation, hint and mimicking learning. On close-set classification tasks like CIFAR100 and ImageNet, RCO improves knowledge distillation by 2.14% and 1.5% respectively. For the sake of evaluating the generalization, we also test RCO on the open-set face recognition task MegaFace

    A Survey of Model Compression and Acceleration for Deep Neural Networks

    Full text link
    Deep neural networks (DNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past five years, tremendous progress has been made in this area. In this paper, we review the recent techniques for compacting and accelerating DNN models. In general, these techniques are divided into four categories: parameter pruning and quantization, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and quantization are described first, after that the other techniques are introduced. For each category, we also provide insightful analysis about the performance, related applications, advantages, and drawbacks. Then we go through some very recent successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrices, the main datasets used for evaluating the model performance, and recent benchmark efforts. Finally, we conclude this paper, discuss remaining the challenges and possible directions for future work.Comment: Published in IEEE Signal Processing Magazine, updated version including more recent work

    Cross-Resolution Face Recognition via Prior-Aided Face Hallucination and Residual Knowledge Distillation

    Full text link
    Recent deep learning based face recognition methods have achieved great performance, but it still remains challenging to recognize very low-resolution query face like 28x28 pixels when CCTV camera is far from the captured subject. Such face with very low-resolution is totally out of detail information of the face identity compared to normal resolution in a gallery and hard to find corresponding faces therein. To this end, we propose a Resolution Invariant Model (RIM) for addressing such cross-resolution face recognition problems, with three distinct novelties. First, RIM is a novel and unified deep architecture, containing a Face Hallucination sub-Net (FHN) and a Heterogeneous Recognition sub-Net (HRN), which are jointly learned end to end. Second, FHN is a well-designed tri-path Generative Adversarial Network (GAN) which simultaneously perceives facial structure and geometry prior information, i.e. landmark heatmaps and parsing maps, incorporated with an unsupervised cross-domain adversarial training strategy to super-resolve very low-resolution query image to its 8x larger ones without requiring them to be well aligned. Third, HRN is a generic Convolutional Neural Network (CNN) for heterogeneous face recognition with our proposed residual knowledge distillation strategy for learning discriminative yet generalized feature representation. Quantitative and qualitative experiments on several benchmarks demonstrate the superiority of the proposed model over the state-of-the-arts. Codes and models will be released upon acceptance.Comment: 10 pages, 4 figure

    Learning Metrics from Teachers: Compact Networks for Image Embedding

    Full text link
    Metric learning networks are used to compute image embeddings, which are widely used in many applications such as image retrieval and face recognition. In this paper, we propose to use network distillation to efficiently compute image embeddings with small networks. Network distillation has been successfully applied to improve image classification, but has hardly been explored for metric learning. To do so, we propose two new loss functions that model the communication of a deep teacher network to a small student network. We evaluate our system in several datasets, including CUB-200-2011, Cars-196, Stanford Online Products and show that embeddings computed using small student networks perform significantly better than those computed using standard networks of similar size. Results on a very compact network (MobileNet-0.25), which can be used on mobile devices, show that the proposed method can greatly improve Recall@1 results from 27.5\% to 44.6\%. Furthermore, we investigate various aspects of distillation for embeddings, including hint and attention layers, semi-supervised learning and cross quality distillation. (Code is available at https://github.com/yulu0724/EmbeddingDistillation.)Comment: To appear at CVPR 201

    An Embarrassingly Simple Approach for Knowledge Distillation

    Full text link
    Knowledge Distillation (KD) aims at improving the performance of a low-capacity student model by inheriting knowledge from a high-capacity teacher model. Previous KD methods typically train a student by minimizing a task-related loss and the KD loss simultaneously, using a pre-defined loss weight to balance these two terms. In this work, we propose to first transfer the backbone knowledge from a teacher to the student, and then only learn the task-head of the student network. Such a decomposition of the training process circumvents the need of choosing an appropriate loss weight, which is often difficult in practice, and thus makes it easier to apply to different datasets and tasks. Importantly, the decomposition permits the core of our method, Stage-by-Stage Knowledge Distillation (SSKD), which facilitates progressive feature mimicking from teacher to student. Extensive experiments on CIFAR-100 and ImageNet suggest that SSKD significantly narrows down the performance gap between student and teacher, outperforming state-of-the-art approaches. We also demonstrate the generalization ability of SSKD on other challenging benchmarks, including face recognition on IJB-A dataset as well as object detection on COCO dataset.Comment: 8 pages and 5 figure
    corecore