72,750 research outputs found

    Deep Feature Learning and Adaptation for Computer Vision

    Get PDF
    We are living in times when a revolution of deep learning is taking place. In general, deep learning models have a backbone that extracts features from the input data followed by task-specific layers, e.g. for classification. This dissertation proposes various deep feature extraction and adaptation methods to improve task-specific learning, such as visual re-identification, tracking, and domain adaptation. The vehicle re-identification (VRID) task requires identifying a given vehicle among a set of vehicles under variations in viewpoint, illumination, partial occlusion, and background clutter. We propose a novel local graph aggregation module for feature extraction to improve VRID performance. We also utilize a class-balanced loss to compensate for the unbalanced class distribution in the training dataset. Overall, our framework achieves state-of-the-art (SOTA) performance in multiple VRID benchmarks. We further extend our VRID method for visual object tracking under occlusion conditions. We motivate visual object tracking from aerial platforms by conducting a benchmarking of tracking methods on aerial datasets. Our study reveals that the current techniques have limited capabilities to re-identify objects when fully occluded or out of view. The Siamese network based trackers perform well compared to others in overall tracking performance. We utilize our VRID work in visual object tracking and propose Siam-ReID, a novel tracking method using a Siamese network and VRID technique. In another approach, we propose SiamGauss, a novel Siamese network with a Gaussian Head for improved confuser suppression and real time performance. Our approach achieves SOTA performance on aerial visual object tracking datasets. A related area of research is developing deep learning based domain adaptation techniques. We propose continual unsupervised domain adaptation, a novel paradigm for domain adaptation in data constrained environments. We show that existing works fail to generalize when the target domain data are acquired in small batches. We propose to use a buffer to store samples that are previously seen by the network and a novel loss function to improve the performance of continual domain adaptation. We further extend our continual unsupervised domain adaptation research for gradually varying domains. Our method outperforms several SOTA methods even though they have the entire domain data available during adaptation

    Online Domain Adaptation for Multi-Object Tracking

    Full text link
    Automatically detecting, labeling, and tracking objects in videos depends first and foremost on accurate category-level object detectors. These might, however, not always be available in practice, as acquiring high-quality large scale labeled training datasets is either too costly or impractical for all possible real-world application scenarios. A scalable solution consists in re-using object detectors pre-trained on generic datasets. This work is the first to investigate the problem of on-line domain adaptation of object detectors for causal multi-object tracking (MOT). We propose to alleviate the dataset bias by adapting detectors from category to instances, and back: (i) we jointly learn all target models by adapting them from the pre-trained one, and (ii) we also adapt the pre-trained model on-line. We introduce an on-line multi-task learning algorithm to efficiently share parameters and reduce drift, while gradually improving recall. Our approach is applicable to any linear object detector, and we evaluate both cheap "mini-Fisher Vectors" and expensive "off-the-shelf" ConvNet features. We quantitatively measure the benefit of our domain adaptation strategy on the KITTI tracking benchmark and on a new dataset (PASCAL-to-KITTI) we introduce to study the domain mismatch problem in MOT.Comment: To appear at BMVC 201
    • …
    corecore