374 research outputs found

    Unsupervised Triplet Hashing for Fast Image Retrieval

    Full text link
    Hashing has played a pivotal role in large-scale image retrieval. With the development of Convolutional Neural Network (CNN), hashing learning has shown great promise. But existing methods are mostly tuned for classification, which are not optimized for retrieval tasks, especially for instance-level retrieval. In this study, we propose a novel hashing method for large-scale image retrieval. Considering the difficulty in obtaining labeled datasets for image retrieval task in large scale, we propose a novel CNN-based unsupervised hashing method, namely Unsupervised Triplet Hashing (UTH). The unsupervised hashing network is designed under the following three principles: 1) more discriminative representations for image retrieval; 2) minimum quantization loss between the original real-valued feature descriptors and the learned hash codes; 3) maximum information entropy for the learned hash codes. Extensive experiments on CIFAR-10, MNIST and In-shop datasets have shown that UTH outperforms several state-of-the-art unsupervised hashing methods in terms of retrieval accuracy

    Unsupervised Learning of Visual Representations using Videos

    Full text link
    Is strong supervision necessary for learning a good visual representation? Do we really need millions of semantically-labeled images to train a Convolutional Neural Network (CNN)? In this paper, we present a simple yet surprisingly powerful approach for unsupervised learning of CNN. Specifically, we use hundreds of thousands of unlabeled videos from the web to learn visual representations. Our key idea is that visual tracking provides the supervision. That is, two patches connected by a track should have similar visual representation in deep feature space since they probably belong to the same object or object part. We design a Siamese-triplet network with a ranking loss function to train this CNN representation. Without using a single image from ImageNet, just using 100K unlabeled videos and the VOC 2012 dataset, we train an ensemble of unsupervised networks that achieves 52% mAP (no bounding box regression). This performance comes tantalizingly close to its ImageNet-supervised counterpart, an ensemble which achieves a mAP of 54.4%. We also show that our unsupervised network can perform competitively in other tasks such as surface-normal estimation
    • …
    corecore