10,047 research outputs found

    Adversarial Discriminative Domain Adaptation

    Full text link
    Adversarial learning methods are a promising approach to training robust deep networks, and can generate complex samples across diverse domains. They also can improve recognition despite the presence of domain shift or dataset bias: several adversarial approaches to unsupervised domain adaptation have recently been introduced, which reduce the difference between the training and test domain distributions and thus improve generalization performance. Prior generative approaches show compelling visualizations, but are not optimal on discriminative tasks and can be limited to smaller shifts. Prior discriminative approaches could handle larger domain shifts, but imposed tied weights on the model and did not exploit a GAN-based loss. We first outline a novel generalized framework for adversarial adaptation, which subsumes recent state-of-the-art approaches as special cases, and we use this generalized view to better relate the prior approaches. We propose a previously unexplored instance of our general framework which combines discriminative modeling, untied weight sharing, and a GAN loss, which we call Adversarial Discriminative Domain Adaptation (ADDA). We show that ADDA is more effective yet considerably simpler than competing domain-adversarial methods, and demonstrate the promise of our approach by exceeding state-of-the-art unsupervised adaptation results on standard cross-domain digit classification tasks and a new more difficult cross-modality object classification task

    A Novel Unsupervised Camera-aware Domain Adaptation Framework for Person Re-identification

    Full text link
    Unsupervised cross-domain person re-identification (Re-ID) faces two key issues. One is the data distribution discrepancy between source and target domains, and the other is the lack of labelling information in target domain. They are addressed in this paper from the perspective of representation learning. For the first issue, we highlight the presence of camera-level sub-domains as a unique characteristic of person Re-ID, and develop camera-aware domain adaptation to reduce the discrepancy not only between source and target domains but also across these sub-domains. For the second issue, we exploit the temporal continuity in each camera of target domain to create discriminative information. This is implemented by dynamically generating online triplets within each batch, in order to maximally take advantage of the steadily improved feature representation in training process. Together, the above two methods give rise to a novel unsupervised deep domain adaptation framework for person Re-ID. Experiments and ablation studies on benchmark datasets demonstrate its superiority and interesting properties.Comment: Accepted by ICCV201
    • …
    corecore