1,797 research outputs found

    3D Human Activity Recognition with Reconfigurable Convolutional Neural Networks

    Full text link
    Human activity understanding with 3D/depth sensors has received increasing attention in multimedia processing and interactions. This work targets on developing a novel deep model for automatic activity recognition from RGB-D videos. We represent each human activity as an ensemble of cubic-like video segments, and learn to discover the temporal structures for a category of activities, i.e. how the activities to be decomposed in terms of classification. Our model can be regarded as a structured deep architecture, as it extends the convolutional neural networks (CNNs) by incorporating structure alternatives. Specifically, we build the network consisting of 3D convolutions and max-pooling operators over the video segments, and introduce the latent variables in each convolutional layer manipulating the activation of neurons. Our model thus advances existing approaches in two aspects: (i) it acts directly on the raw inputs (grayscale-depth data) to conduct recognition instead of relying on hand-crafted features, and (ii) the model structure can be dynamically adjusted accounting for the temporal variations of human activities, i.e. the network configuration is allowed to be partially activated during inference. For model training, we propose an EM-type optimization method that iteratively (i) discovers the latent structure by determining the decomposed actions for each training example, and (ii) learns the network parameters by using the back-propagation algorithm. Our approach is validated in challenging scenarios, and outperforms state-of-the-art methods. A large human activity database of RGB-D videos is presented in addition.Comment: This manuscript has 10 pages with 9 figures, and a preliminary version was published in ACM MM'14 conferenc

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201

    Interstellar: Using Halide's Scheduling Language to Analyze DNN Accelerators

    Full text link
    We show that DNN accelerator micro-architectures and their program mappings represent specific choices of loop order and hardware parallelism for computing the seven nested loops of DNNs, which enables us to create a formal taxonomy of all existing dense DNN accelerators. Surprisingly, the loop transformations needed to create these hardware variants can be precisely and concisely represented by Halide's scheduling language. By modifying the Halide compiler to generate hardware, we create a system that can fairly compare these prior accelerators. As long as proper loop blocking schemes are used, and the hardware can support mapping replicated loops, many different hardware dataflows yield similar energy efficiency with good performance. This is because the loop blocking can ensure that most data references stay on-chip with good locality and the processing units have high resource utilization. How resources are allocated, especially in the memory system, has a large impact on energy and performance. By optimizing hardware resource allocation while keeping throughput constant, we achieve up to 4.2X energy improvement for Convolutional Neural Networks (CNNs), 1.6X and 1.8X improvement for Long Short-Term Memories (LSTMs) and multi-layer perceptrons (MLPs), respectively.Comment: Published as a conference paper at ASPLOS 202
    • …
    corecore