19,262 research outputs found

    A comparative evaluation of deep and shallow approaches to the automatic detection of common grammatical errors

    Get PDF
    This paper compares a deep and a shallow processing approach to the problem of classifying a sentence as grammatically wellformed or ill-formed. The deep processing approach uses the XLE LFG parser and English grammar: two versions are presented, one which uses the XLE directly to perform the classification, and another one which uses a decision tree trained on features consisting of the XLE’s output statistics. The shallow processing approach predicts grammaticality based on n-gram frequency statistics: we present two versions, one which uses frequency thresholds and one which uses a decision tree trained on the frequencies of the rarest n-grams in the input sentence. We find that the use of a decision tree improves on the basic approach only for the deep parser-based approach. We also show that combining both the shallow and deep decision tree features is effective. Our evaluation is carried out using a large test set of grammatical and ungrammatical sentences. The ungrammatical test set is generated automatically by inserting grammatical errors into well-formed BNC sentences

    Wronging a Right: Generating Better Errors to Improve Grammatical Error Detection

    Get PDF
    Grammatical error correction, like other machine learning tasks, greatly benefits from large quantities of high quality training data, which is typically expensive to produce. While writing a program to automatically generate realistic grammatical errors would be difficult, one could learn the distribution of naturallyoccurring errors and attempt to introduce them into other datasets. Initial work on inducing errors in this way using statistical machine translation has shown promise; we investigate cheaply constructing synthetic samples, given a small corpus of human-annotated data, using an off-the-rack attentive sequence-to-sequence model and a straight-forward post-processing procedure. Our approach yields error-filled artificial data that helps a vanilla bi-directional LSTM to outperform the previous state of the art at grammatical error detection, and a previously introduced model to gain further improvements of over 5% F0.5F_{0.5} score. When attempting to determine if a given sentence is synthetic, a human annotator at best achieves 39.39 F1F_1 score, indicating that our model generates mostly human-like instances.Comment: Accepted as a short paper at EMNLP 201

    GenERRate: generating errors for use in grammatical error detection

    Get PDF
    This paper explores the issue of automatically generated ungrammatical data and its use in error detection, with a focus on the task of classifying a sentence as grammatical or ungrammatical. We present an error generation tool called GenERRate and show how GenERRate can be used to improve the performance of a classifier on learner data. We describe initial attempts to replicate Cambridge Learner Corpus errors using GenERRate

    An Analysis of Source-Side Grammatical Errors in NMT

    Full text link
    The quality of Neural Machine Translation (NMT) has been shown to significantly degrade when confronted with source-side noise. We present the first large-scale study of state-of-the-art English-to-German NMT on real grammatical noise, by evaluating on several Grammar Correction corpora. We present methods for evaluating NMT robustness without true references, and we use them for extensive analysis of the effects that different grammatical errors have on the NMT output. We also introduce a technique for visualizing the divergence distribution caused by a source-side error, which allows for additional insights.Comment: Accepted and to be presented at BlackboxNLP 201
    corecore