13 research outputs found
Investigating the thermal physiology of critically endangered North Atlantic right whales Eubalaena glacialis via aerial infrared thermography
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lonati, G., Zitterbart, D. P., Miller, C. A., Corkeron, P. J., Murphy, C. T., & Moore, M. J. Investigating the thermal physiology of critically endangered North Atlantic right whales Eubalaena glacialis via aerial infrared thermography. Endangered Species Research, 48, (2022): 139–154, https://doi.org/10.3354/esr01193.The Critically Endangered status of North Atlantic right whales Eubalaena glacialis (NARWs) warrants the development of new, less invasive technology to monitor the health of individuals. Combined with advancements in remotely piloted aircraft systems (RPAS, commonly ‘drones’), infrared thermography (IRT) is being increasingly used to detect and count marine mammals and study their physiology. We conducted RPAS-based IRT over NARWs in Cape Cod Bay, MA, USA, in 2017 and 2018. Observations demonstrated 3 particularly useful applications of RPAS-based IRT to study large whales: (1) exploring patterns of cranial heat loss and providing insight into the physiological mechanisms that produce these patterns; (2) tracking subsurface individuals in real-time (depending on the thermal stratification of the water column) using cold surface water anomalies resulting from fluke upstrokes; and (3) detecting natural changes in superficial blood circulation or diagnosing pathology based on heat anomalies on post-cranial body surfaces. These qualitative applications present a new, important opportunity to study, monitor, and conserve large whales, particularly rare and at-risk species such as NARWs. Despite the challenges of using this technology in aquatic environments, the applications of RPAS-based IRT for monitoring the health and behavior of endangered marine mammals, including the collection of quantitative data on thermal physiology, will continue to diversify.All activities were conducted under NOAA permit 18355-01 and were approved by Woods Hole Oceanographic Institution’s Institutional Animal Care and Use Committee (IACUC). The RPAS pilot-in-command was certified through the United States Federal Aviation Admin-istration. We thank Amy Knowlton (Anderson Cabot Center for Ocean Life at the New England Aquarium) for photo-identifying individual North Atlantic right whales and Rocky Geyer (Woods Hole Oceanographic Institution) for
providing and interpreting water temperature data relatedto the observations of thermal flukeprints (courtesy of the Massachusetts Water Resources Authority). We also appreciate constructive conversations with Iain Kerr (Ocean Alliance), Chris Zadra (Ocean Alliance), and Joy Reidenberg (Icahn School of Medicine at Mount Sinai). Funding was provided by a Woods Hole Oceanographic Research Opportunity grant, the North Pond Foundation, and NMFS NA14OAR4320158
Best practice guidelines for cetacean tagging
Animal-borne electronic instruments (tags) are valuable tools for collecting information on cetacean physiology, behaviour and ecology, and for enhancing conservation and management policies for cetacean populations. Tags allow researchers to track the movement patterns, habitat use andother aspects of the behaviour of animals that are otherwise difficult to observe. They can even be used to monitor the physiology of a tagged animal within its changing environment. Such tags are ideal for identifying and predicting responses to anthropogenic threats, thus facilitating the development of robust mitigation measures. With the increasing need for data best provided by tagging and the increasing availability of tags, such research is becoming more common. Tagging can, however, pose risks to the health and welfare of cetaceans and to personnel involved in tagging operations. Here we provide ‘best practice’ recommendations for cetacean tag design, deployment and follow-up assessment of tagged individuals, compiled by biologists and veterinarians with significant experience in cetacean tagging. This paper is intended to serve as a resource to assist tag users, veterinarians, ethics committees and regulatory agency staff in the implementation of high standards of practice, and to promote the training of specialists in this area. Standardised terminology for describing tag design and illustrations of tag types and attachment sites are provided, along with protocols for tag testing and deployment (both remote and through capture-release), including training of operators. The recommendations emphasise the importance of ensuring that tagging is ethically and scientifically justified for a particular project and that tagging only be used to address bona fide research or conservation questions that are best addressed with tagging, as supported by an exploration of alternative methods. Recommendations are provided for minimising effects on individual animals (e.g. through careful selection of the individual, tag design and implant sterilisation) and for improving knowledge of tagging effects on cetaceans through increased post-tagging monitoring.Publisher PDFPeer reviewe
Consolidated quarterly progress report
Planetary atmospheres, lunar structures, particle energy spectra, exobiology, space physiology, and engineering sciences - space science
Deliverable 1.1 review document on the management of marine areas with particular regard on concepts, objectives, frameworks and tools to implement, monitor, and evaluate spatially managed areas
The main objectives if this document were to review the existing information on spatial management of marine areas, identifying the relevant policy objectives, to identify parameters linked to the success or failure of the various Spatially Managed marine Areas (SMAs) regimes, to report on methods and tools used in monitoring and evaluation of the state of SMAs, and to identify gaps and weaknesses in the existing frameworks in relation to the implementation, monitoring, evaluation and management of SMAs. The document is naturally divided in two sections: Section 1 reviews the concepts, objectives, drivers, policy and management framework, and extraneous factors related to the design, implementation and evaluation of SMAs; Section 2 reviews the tools and methods to monitor and evaluate seabed habitats and marine populations.peer-reviewe
Cyber-Human Systems, Space Technologies, and Threats
CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp
Abstracts of manuscripts submitted in 1989 for publication
This volume contains the abstracts of manuscripts submitted for publication during calendar year 1989 by the staff and
students of the Woods Hole Oceanographic Institution. We identify the journal of those manuscripts which are in press or have been
published. The volume is intended to be informative, but not a bibliography.
The abstracts are listed by title in the Table of Contents and are grouped into one of our five deparments, marine policy, or the
student category. An author index is presented in the back to facilitate locating specific papers
Food consumption and growth of marine mammals = Voedselopname en groei van zeezoogdieren
This thesis contains 35 studies on food consumption and growth of captive marine marinmals. Seventeen studies concern food intake and growth records of 9 odontocete species (toothed whales), varying in body weight from 30 to 4500 kg: the killer whale, beluga, false killer whale, Atlantic bottlenose dolphin, Amazon river dolphin, common dolphin, dusky dolphin, Commerson's dolphin, and the harbour porpoise (chapter 2). The other eighteen studies concern 8 pinniped species (true seals, sea lions, and walruses), in which the adult male body weight varied between 110 and 1400 kg, and adult female weight between 70 and 800 kg: the Southern elephant seal, grey seal, harbour seal, Steller sea lion, South American sea lion, California sea lion, South African fur seal, and Pacific walrus (chapters 3,4, and 5). In each study, the results were compared to available information on food consumption and growth of wild and captive conspecifics, and were considered with respect to the life histories of the species.</p
