34,076 research outputs found

    Deep Blind Super-Resolution for Satellite Video

    Full text link
    Recent efforts have witnessed remarkable progress in Satellite Video Super-Resolution (SVSR). However, most SVSR methods usually assume the degradation is fixed and known, e.g., bicubic downsampling, which makes them vulnerable in real-world scenes with multiple and unknown degradations. To alleviate this issue, blind SR has thus become a research hotspot. Nevertheless, existing approaches are mainly engaged in blur kernel estimation while losing sight of another critical aspect for VSR tasks: temporal compensation, especially compensating for blurry and smooth pixels with vital sharpness from severely degraded satellite videos. Therefore, this paper proposes a practical Blind SVSR algorithm (BSVSR) to explore more sharp cues by considering the pixel-wise blur levels in a coarse-to-fine manner. Specifically, we employed multi-scale deformable convolution to coarsely aggregate the temporal redundancy into adjacent frames by window-slid progressive fusion. Then the adjacent features are finely merged into mid-feature using deformable attention, which measures the blur levels of pixels and assigns more weights to the informative pixels, thus inspiring the representation of sharpness. Moreover, we devise a pyramid spatial transformation module to adjust the solution space of sharp mid-feature, resulting in flexible feature adaptation in multi-level domains. Quantitative and qualitative evaluations on both simulated and real-world satellite videos demonstrate that our BSVSR performs favorably against state-of-the-art non-blind and blind SR models. Code will be available at https://github.com/XY-boy/Blind-Satellite-VSRComment: Published in IEEE TGR

    UG^2: a Video Benchmark for Assessing the Impact of Image Restoration and Enhancement on Automatic Visual Recognition

    Full text link
    Advances in image restoration and enhancement techniques have led to discussion about how such algorithmscan be applied as a pre-processing step to improve automatic visual recognition. In principle, techniques like deblurring and super-resolution should yield improvements by de-emphasizing noise and increasing signal in an input image. But the historically divergent goals of the computational photography and visual recognition communities have created a significant need for more work in this direction. To facilitate new research, we introduce a new benchmark dataset called UG^2, which contains three difficult real-world scenarios: uncontrolled videos taken by UAVs and manned gliders, as well as controlled videos taken on the ground. Over 160,000 annotated frames forhundreds of ImageNet classes are available, which are used for baseline experiments that assess the impact of known and unknown image artifacts and other conditions on common deep learning-based object classification approaches. Further, current image restoration and enhancement techniques are evaluated by determining whether or not theyimprove baseline classification performance. Results showthat there is plenty of room for algorithmic innovation, making this dataset a useful tool going forward.Comment: Supplemental material: https://goo.gl/vVM1xe, Dataset: https://goo.gl/AjA6En, CVPR 2018 Prize Challenge: ug2challenge.or

    Non-blind Image Restoration Based on Convolutional Neural Network

    Full text link
    Blind image restoration processors based on convolutional neural network (CNN) are intensively researched because of their high performance. However, they are too sensitive to the perturbation of the degradation model. They easily fail to restore the image whose degradation model is slightly different from the trained degradation model. In this paper, we propose a non-blind CNN-based image restoration processor, aiming to be robust against a perturbation of the degradation model compared to the blind restoration processor. Experimental comparisons demonstrate that the proposed non-blind CNN-based image restoration processor can robustly restore images compared to existing blind CNN-based image restoration processors.Comment: Accepted by IEEE 7th Global Conference on Consumer Electronics, 201
    • …
    corecore