39 research outputs found

    Deep Bilevel Learning

    Full text link
    We present a novel regularization approach to train neural networks that enjoys better generalization and test error than standard stochastic gradient descent. Our approach is based on the principles of cross-validation, where a validation set is used to limit the model overfitting. We formulate such principles as a bilevel optimization problem. This formulation allows us to define the optimization of a cost on the validation set subject to another optimization on the training set. The overfitting is controlled by introducing weights on each mini-batch in the training set and by choosing their values so that they minimize the error on the validation set. In practice, these weights define mini-batch learning rates in a gradient descent update equation that favor gradients with better generalization capabilities. Because of its simplicity, this approach can be integrated with other regularization methods and training schemes. We evaluate extensively our proposed algorithm on several neural network architectures and datasets, and find that it consistently improves the generalization of the model, especially when labels are noisy.Comment: ECCV 201

    Cluster consistency: Simple yet effect robust learning algorithm on large-scale photoplethysmography for atrial fibrillation detection in the presence of real-world label noise

    Full text link
    Obtaining large-scale well-annotated is always a daunting challenge, especially in the medical research domain because of the shortage of domain expert. Instead of human annotation, in this work, we use the alarm information generated from bed-side monitor to get the pseudo label for the co-current photoplethysmography (PPG) signal. Based on this strategy, we end up with over 8 million 30-second PPG segment. To solve the label noise caused by false alarms, we propose the cluster consistency, which use an unsupervised auto-encoder (hence not subject to label noise) approach to cluster training samples into a finite number of clusters. Then the learned cluster membership is used in the subsequent supervised learning phase to force the distance in the latent space of samples in the same cluster to be small while that of samples in different clusters to be big. In the experiment, we compare with the state-of-the-art algorithms and test on external datasets. The results show the superiority of our method in both classification performance and efficiency

    Elucidating and Overcoming the Challenges of Label Noise in Supervised Contrastive Learning

    Full text link
    Image classification datasets exhibit a non-negligible fraction of mislabeled examples, often due to human error when one class superficially resembles another. This issue poses challenges in supervised contrastive learning (SCL), where the goal is to cluster together data points of the same class in the embedding space while distancing those of disparate classes. While such methods outperform those based on cross-entropy, they are not immune to labeling errors. However, while the detrimental effects of noisy labels in supervised learning are well-researched, their influence on SCL remains largely unexplored. Hence, we analyse the effect of label errors and examine how they disrupt the SCL algorithm's ability to distinguish between positive and negative sample pairs. Our analysis reveals that human labeling errors manifest as easy positive samples in around 99% of cases. We, therefore, propose D-SCL, a novel Debiased Supervised Contrastive Learning objective designed to mitigate the bias introduced by labeling errors. We demonstrate that D-SCL consistently outperforms state-of-the-art techniques for representation learning across diverse vision benchmarks, offering improved robustness to label errors

    A Benchmark of Long-tailed Instance Segmentation with Noisy Labels (Short Version)

    Full text link
    In this paper, we consider the instance segmentation task on a long-tailed dataset, which contains label noise, i.e., some of the annotations are incorrect. There are two main reasons making this case realistic. First, datasets collected from real world usually obey a long-tailed distribution. Second, for instance segmentation datasets, as there are many instances in one image and some of them are tiny, it is easier to introduce noise into the annotations. Specifically, we propose a new dataset, which is a large vocabulary long-tailed dataset containing label noise for instance segmentation. Furthermore, we evaluate previous proposed instance segmentation algorithms on this dataset. The results indicate that the noise in the training dataset will hamper the model in learning rare categories and decrease the overall performance, and inspire us to explore more effective approaches to address this practical challenge. The code and dataset are available in https://github.com/GuanlinLee/Noisy-LVIS
    corecore