5,738 research outputs found

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Runway Safety Improvements Through a Data Driven Approach for Risk Flight Prediction and Simulation

    Get PDF
    Runway overrun is one of the most frequently occurring flight accident types threatening the safety of aviation. Sensors have been improved with recent technological advancements and allow data collection during flights. The recorded data helps to better identify the characteristics of runway overruns. The improved technological capabilities and the growing air traffic led to increased momentum for reducing flight risk using artificial intelligence. Discussions on incorporating artificial intelligence to enhance flight safety are timely and critical. Using artificial intelligence, we may be able to develop the tools we need to better identify runway overrun risk and increase awareness of runway overruns. This work seeks to increase attitude, skill, and knowledge (ASK) of runway overrun risks by predicting the flight states near touchdown and simulating the flight exposed to runway overrun precursors. To achieve this, the methodology develops a prediction model and a simulation model. During the flight training process, the prediction model is used in flight to identify potential risks and the simulation model is used post-flight to review the flight behavior. The prediction model identifies potential risks by predicting flight parameters that best characterize the landing performance during the final approach phase. The predicted flight parameters are used to alert the pilots for any runway overrun precursors that may pose a threat. The predictions and alerts are made when thresholds of various flight parameters are exceeded. The flight simulation model simulates the final approach trajectory with an emphasis on capturing the effect wind has on the aircraft. The focus is on the wind since the wind is a relatively significant factor during the final approach; typically, the aircraft is stabilized during the final approach. The flight simulation is used to quickly assess the differences between fight patterns that have triggered overrun precursors and normal flights with no abnormalities. The differences are crucial in learning how to mitigate adverse flight conditions. Both of the models are created with neural network models. The main challenges of developing a neural network model are the unique assignment of each model design space and the size of a model design space. A model design space is unique to each problem and cannot accommodate multiple problems. A model design space can also be significantly large depending on the depth of the model. Therefore, a hyperparameter optimization algorithm is investigated and used to design the data and model structures to best characterize the aircraft behavior during the final approach. A series of experiments are performed to observe how the model accuracy change with different data pre-processing methods for the prediction model and different neural network models for the simulation model. The data pre-processing methods include indexing the data by different frequencies, by different window sizes, and data clustering. The neural network models include simple Recurrent Neural Networks, Gated Recurrent Units, Long Short Term Memory, and Neural Network Autoregressive with Exogenous Input. Another series of experiments are performed to evaluate the robustness of these models to adverse wind and flare. This is because different wind conditions and flares represent controls that the models need to map to the predicted flight states. The most robust models are then used to identify significant features for the prediction model and the feasible control space for the simulation model. The outcomes of the most robust models are also mapped to the required landing distance metric so that the results of the prediction and simulation are easily read. Then, the methodology is demonstrated with a sample flight exposed to an overrun precursor, and high approach speed, to show how the models can potentially increase attitude, skill, and knowledge of runway overrun risk. The main contribution of this work is on evaluating the accuracy and robustness of prediction and simulation models trained using Flight Operational Quality Assurance (FOQA) data. Unlike many studies that focused on optimizing the model structures to create the two models, this work optimized both data and model structures to ensure that the data well capture the dynamics of the aircraft it represents. To achieve this, this work introduced a hybrid genetic algorithm that combines the benefits of conventional and quantum-inspired genetic algorithms to quickly converge to an optimal configuration while exploring the design space. With the optimized model, this work identified the data features, from the final approach, with a higher contribution to predicting airspeed, vertical speed, and pitch angle near touchdown. The top contributing features are altitude, angle of attack, core rpm, and air speeds. For both the prediction and the simulation models, this study goes through the impact of various data preprocessing methods on the accuracy of the two models. The results may help future studies identify the right data preprocessing methods for their work. Another contribution from this work is on evaluating how flight control and wind affect both the prediction and the simulation models. This is achieved by mapping the model accuracy at various levels of control surface deflection, wind speeds, and wind direction change. The results saw fairly consistent prediction and simulation accuracy at different levels of control surface deflection and wind conditions. This showed that the neural network-based models are effective in creating robust prediction and simulation models of aircraft during the final approach. The results also showed that data frequency has a significant impact on the prediction and simulation accuracy so it is important to have sufficient data to train the models in the condition that the models will be used. The final contribution of this work is on demonstrating how the prediction and the simulation models can be used to increase awareness of runway overrun.Ph.D

    Assessing Atmospheric Pollution and Its Impacts on the Human Health

    Get PDF
    This reprint contains articles published in the Special Issue entitled "Assessing Atmospheric Pollution and Its Impacts on the Human Health" in the journal Atmosphere. The research focuses on the evaluation of atmospheric pollution by statistical methods on the one hand, and on the other hand, on the evaluation of the relationship between the level of pollution and the extent of its effect on the population's health, especially on pulmonary diseases

    Modeling and Simulation in Engineering

    Get PDF
    The Special Issue Modeling and Simulation in Engineering, belonging to the section Engineering Mathematics of the Journal Mathematics, publishes original research papers dealing with advanced simulation and modeling techniques. The present book, “Modeling and Simulation in Engineering I, 2022”, contains 14 papers accepted after peer review by recognized specialists in the field. The papers address different topics occurring in engineering, such as ferrofluid transport in magnetic fields, non-fractal signal analysis, fractional derivatives, applications of swarm algorithms and evolutionary algorithms (genetic algorithms), inverse methods for inverse problems, numerical analysis of heat and mass transfer, numerical solutions for fractional differential equations, Kriging modelling, theory of the modelling methodology, and artificial neural networks for fault diagnosis in electric circuits. It is hoped that the papers selected for this issue will attract a significant audience in the scientific community and will further stimulate research involving modelling and simulation in mathematical physics and in engineering

    Specificity of the innate immune responses to different classes of non-tuberculous mycobacteria

    Get PDF
    Mycobacterium avium is the most common nontuberculous mycobacterium (NTM) species causing infectious disease. Here, we characterized a M. avium infection model in zebrafish larvae, and compared it to M. marinum infection, a model of tuberculosis. M. avium bacteria are efficiently phagocytosed and frequently induce granuloma-like structures in zebrafish larvae. Although macrophages can respond to both mycobacterial infections, their migration speed is faster in infections caused by M. marinum. Tlr2 is conservatively involved in most aspects of the defense against both mycobacterial infections. However, Tlr2 has a function in the migration speed of macrophages and neutrophils to infection sites with M. marinum that is not observed with M. avium. Using RNAseq analysis, we found a distinct transcriptome response in cytokine-cytokine receptor interaction for M. avium and M. marinum infection. In addition, we found differences in gene expression in metabolic pathways, phagosome formation, matrix remodeling, and apoptosis in response to these mycobacterial infections. In conclusion, we characterized a new M. avium infection model in zebrafish that can be further used in studying pathological mechanisms for NTM-caused diseases

    Financial reporting in Europe: Accounting for regulatory and technical challenges

    Get PDF
    This thesis explores the challenges facing financial reporting in Europe both regulatory and technical in nature. This has involved research into the background of European legislation and conducting face to face semi-structured interviews with senior elite actors from institutions governing the regulatory and technical arrangements of general-purpose financial reporting practice in Europe. European companies are required to disclose information about their financial affairs. The European legislation governing company financial reporting was delegated to the International Accounting Standards Board (IASB) by the EU institutions via Regulation 1606/2002. This thesis argues that European agencies (represented by EFRAG) are caught in a devolved regulatory relationship where the International Accounting Standards Board (IASB) has been able to assume a relatively strong self-regulatory position. This weakens the agency that European legislative institutions have over their own legislation with regards to financial reporting practice. This thesis argues this loss of agency by European institutions over their legislation governing accounting practice is not a fait accompli but is challenged and contested as European institutions seek and need a more co-regulated arrangement. A key argument developed in this thesis is that regulatory arrangements governing accounting practice are evolving in terms of the distribution of responsibilities and control over European financial reporting practice. To understand how the regulatory landscape governing European accounting practice is changing we employ an investigative lens that is grounded in accounting. This investigative lens employs three elements that are regarded in the literature review as significant technical challenges facing accounting practice in Europe. The first of these is retaining or not prudent accounting practice, the second is concerned with the development of non-financial reporting and the third, concerns with installing the public interest not just investor interests in financial disclosures. It is through this investigative lens that this thesis assesses the extent to which regulatory arrangements and agency governing accounting practice in Europe are shifting sands

    Blockchain Technology: Disruptor or Enhnancer to the Accounting and Auditing Profession

    Get PDF
    The unique features of blockchain technology (BCT) - peer-to-peer network, distribution ledger, consensus decision-making, transparency, immutability, auditability, and cryptographic security - coupled with the success enjoyed by Bitcoin and other cryptocurrencies have encouraged many to assume that the technology would revolutionise virtually all aspects of business. A growing body of scholarship suggests that BCT would disrupt the accounting and auditing fields by changing accounting practices, disintermediating auditors, and eliminating financial fraud. BCT disrupts audits (Lombard et al.,2021), reduces the role of audit firms (Yermack 2017), undermines accountants' roles with software developers and miners (Fortin & Pimentel 2022); eliminates many management functions, transforms businesses (Tapscott & Tapscott, 2017), facilitates a triple-entry accounting system (Cai, 2021), and prevents fraudulent transactions (Dai, et al., 2017; Rakshit et al., 2022). Despite these speculations, scholars have acknowledged that the application of BCT in the accounting and assurance industry is underexplored and many existing studies are said to lack engagement with practitioners (Dai & Vasarhelyi, 2017; Lombardi et al., 2021; Schmitz & Leoni, 2019). This study empirically explored whether BCT disrupts or enhances accounting and auditing fields. It also explored the relevance of audit in a BCT environment and the effectiveness of the BCT mechanism for fraud prevention and detection. The study further examined which technical skillsets accountants and auditors require in a BCT environment, and explored the incentives, barriers, and unintended consequences of the adoption of BCT in the accounting and auditing professions. The current COVID-19 environment was also investigated in terms of whether the pandemic has improved BCT adoption or not. A qualitative exploratory study used semi-structured interviews to engage practitioners from blockchain start-ups, IT experts, financial analysts, accountants, auditors, academics, organisational leaders, consultants, and editors who understood the technology. With the aid of NVIVO qualitative analysis software, the views of 44 participants from 13 countries: New Zealand, Australia, United States, United Kingdom, Canada, Germany, Italy, Ireland, Hong Kong, India, Pakistan, United Arab Emirates, and South Africa were analysed. The Technological, Organisational, and Environmental (TOE) framework with consequences of innovation context was adopted for this study. This expanded TOE framework was used as the theoretical lens to understand the disruption of BCT and its adoption in the accounting and auditing fields. Four clear patterns emerged. First, BCT is an emerging tool that accountants and auditors use mainly to analyse financial records because technology cannot disintermediate auditors from the financial system. Second, the technology can detect anomalies but cannot prevent financial fraud. Third, BCT has not been adopted by any organisation for financial reporting and accounting purposes, and accountants and auditors do not require new skillsets or an understanding of the BCT programming language to be able to operate in a BCT domain. Fourth, the advent of COVID-19 has not substantially enhanced the adoption of BCT. Additionally, this study highlights the incentives, barriers, and unintended consequences of adopting BCT as financial technology (FinTech). These findings shed light on important questions about BCT disrupting and disintermediating auditors, the extent of adoption in the accounting industry, preventing fraud and anomalies, and underscores the notion that blockchain, as an emerging technology, currently does not appear to be substantially disrupting the accounting and auditing profession. This study makes methodological, theoretical, and practical contributions. At the methodological level, the study adopted the social constructivist-interpretivism paradigm with an exploratory qualitative method to engage and understand BCT as a disruptive innovation in the accounting industry. The engagement with practitioners from diverse fields, professions, and different countries provides a distinctive and innovative contribution to methodological and practical knowledge. At the theoretical level, the findings contribute to the literature by offering an integrated conceptual TOE framework. The framework offers a reference for practitioners, academics and policymakers seeking to appraise comprehensive factors influencing BCT adoption and its likely unintended consequences. The findings suggest that, at present, no organisations are using BCT for financial reporting and accounting systems. This study contributes to practice by highlighting the differences between initial expectations and practical applications of what BCT can do in the accounting and auditing fields. The study could not find any empirical evidence that BCT will disrupt audits, eliminate the roles of auditors in a financial system, and prevent and detect financial fraud. Also, there was no significant evidence that accountants and auditors required higher-level skillsets and an understanding of BCT programming language to be able to use the technology. Future research should consider the implications of an external audit firm as a node in a BCT network on the internal audit functions. It is equally important to critically examine the relevance of including programming languages or codes in the curriculum of undergraduate accounting students. Future research could also empirically evaluate if a BCT-enabled triple-entry system could prevent financial statements and management fraud
    corecore