2 research outputs found

    Deep Adaptive Inference Networks for Single Image Super-Resolution

    Full text link
    Recent years have witnessed tremendous progress in single image super-resolution (SISR) owing to the deployment of deep convolutional neural networks (CNNs). For most existing methods, the computational cost of each SISR model is irrelevant to local image content, hardware platform and application scenario. Nonetheless, content and resource adaptive model is more preferred, and it is encouraging to apply simpler and efficient networks to the easier regions with less details and the scenarios with restricted efficiency constraints. In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR). In particular, our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth. Adaptive inference can then be performed with the support of efficient sparse convolution, where only a fraction of the layers in the backbone is performed at a given position according to its predicted depth. The network learning can be formulated as the joint optimization of reconstruction and network depth losses. In the inference stage, the average depth can be flexibly tuned to meet a range of efficiency constraints. Experiments demonstrate the effectiveness and adaptability of our AdaDSR in contrast to its counterparts (e.g., EDSR and RCAN).Comment: Code can be found at https://github.com/csmliu/AdaDS

    Exploring Sparsity in Image Super-Resolution for Efficient Inference

    Full text link
    Current CNN-based super-resolution (SR) methods process all locations equally with computational resources being uniformly assigned in space. However, since missing details in low-resolution (LR) images mainly exist in regions of edges and textures, less computational resources are required for those flat regions. Therefore, existing CNN-based methods involve redundant computation in flat regions, which increases their computational cost and limits their applications on mobile devices. In this paper, we explore the sparsity in image SR to improve inference efficiency of SR networks. Specifically, we develop a Sparse Mask SR (SMSR) network to learn sparse masks to prune redundant computation. Within our SMSR, spatial masks learn to identify "important" regions while channel masks learn to mark redundant channels in those "unimportant" regions. Consequently, redundant computation can be accurately localized and skipped while maintaining comparable performance. It is demonstrated that our SMSR achieves state-of-the-art performance with 41%/33%/27% FLOPs being reduced for x2/3/4 SR. Code is available at: https://github.com/LongguangWang/SMSR.Comment: Accepted by CVPR 202
    corecore