2 research outputs found

    Identity-Aware Attribute Recognition via Real-Time Distributed Inference in Mobile Edge Clouds

    Full text link
    With the development of deep learning technologies, attribute recognition and person re-identification (re-ID) have attracted extensive attention and achieved continuous improvement via executing computing-intensive deep neural networks in cloud datacenters. However, the datacenter deployment cannot meet the real-time requirement of attribute recognition and person re-ID, due to the prohibitive delay of backhaul networks and large data transmissions from cameras to datacenters. A feasible solution thus is to employ mobile edge clouds (MEC) within the proximity of cameras and enable distributed inference. In this paper, we design novel models for pedestrian attribute recognition with re-ID in an MEC-enabled camera monitoring system. We also investigate the problem of distributed inference in the MEC-enabled camera network. To this end, we first propose a novel inference framework with a set of distributed modules, by jointly considering the attribute recognition and person re-ID. We then devise a learning-based algorithm for the distributions of the modules of the proposed distributed inference framework, considering the dynamic MEC-enabled camera network with uncertainties. We finally evaluate the performance of the proposed algorithm by both simulations with real datasets and system implementation in a real testbed. Evaluation results show that the performance of the proposed algorithm with distributed inference framework is promising, by reaching the accuracies of attribute recognition and person identification up to 92.9% and 96.6% respectively, and significantly reducing the inference delay by at least 40.6% compared with existing methods.Comment: 9 pages, 8 figures, Proceedings of the 28th ACM International Conference on Multimedia (ACM MM'20), Seattle, WA, US

    A Survey of Deep Active Learning

    Full text link
    Active learning (AL) attempts to maximize the performance gain of the model by marking the fewest samples. Deep learning (DL) is greedy for data and requires a large amount of data supply to optimize massive parameters, so that the model learns how to extract high-quality features. In recent years, due to the rapid development of internet technology, we are in an era of information torrents and we have massive amounts of data. In this way, DL has aroused strong interest of researchers and has been rapidly developed. Compared with DL, researchers have relatively low interest in AL. This is mainly because before the rise of DL, traditional machine learning requires relatively few labeled samples. Therefore, early AL is difficult to reflect the value it deserves. Although DL has made breakthroughs in various fields, most of this success is due to the publicity of the large number of existing annotation datasets. However, the acquisition of a large number of high-quality annotated datasets consumes a lot of manpower, which is not allowed in some fields that require high expertise, especially in the fields of speech recognition, information extraction, medical images, etc. Therefore, AL has gradually received due attention. A natural idea is whether AL can be used to reduce the cost of sample annotations, while retaining the powerful learning capabilities of DL. Therefore, deep active learning (DAL) has emerged. Although the related research has been quite abundant, it lacks a comprehensive survey of DAL. This article is to fill this gap, we provide a formal classification method for the existing work, and a comprehensive and systematic overview. In addition, we also analyzed and summarized the development of DAL from the perspective of application. Finally, we discussed the confusion and problems in DAL, and gave some possible development directions for DAL
    corecore