2 research outputs found

    Complementary Attributes: A New Clue to Zero-Shot Learning

    Full text link
    Zero-shot learning (ZSL) aims to recognize unseen objects using disjoint seen objects via sharing attributes. The generalization performance of ZSL is governed by the attributes, which transfer semantic information from seen classes to unseen classes. To take full advantage of the knowledge transferred by attributes, in this paper, we introduce the notion of complementary attributes (CA), as a supplement to the original attributes, to enhance the semantic representation ability. Theoretical analyses demonstrate that complementary attributes can improve the PAC-style generalization bound of original ZSL model. Since the proposed CA focuses on enhancing the semantic representation, CA can be easily applied to any existing attribute-based ZSL methods, including the label-embedding strategy based ZSL (LEZSL) and the probability-prediction strategy based ZSL (PPZSL). In PPZSL, there is a strong assumption that all the attributes are independent of each other, which is arguably unrealistic in practice. To solve this problem, a novel rank aggregation framework is proposed to circumvent the assumption. Extensive experiments on five ZSL benchmark datasets and the large-scale ImageNet dataset demonstrate that the proposed complementary attributes and rank aggregation can significantly and robustly improve existing ZSL methods and achieve the state-of-the-art performance.Comment: Accepted by IEEE TRANSACTIONS ON CYBERNETIC

    PSC-Net: Learning Part Spatial Co-occurrence for Occluded Pedestrian Detection

    Full text link
    Detecting pedestrians, especially under heavy occlusions, is a challenging computer vision problem with numerous real-world applications. This paper introduces a novel approach, termed as PSC-Net, for occluded pedestrian detection. The proposed PSC-Net contains a dedicated module that is designed to explicitly capture both inter and intra-part co-occurrence information of different pedestrian body parts through a Graph Convolutional Network (GCN). Both inter and intra-part co-occurrence information contribute towards improving the feature representation for handling varying level of occlusions, ranging from partial to severe occlusions. Our PSC-Net exploits the topological structure of pedestrian and does not require part-based annotations or additional visible bounding-box (VBB) information to learn part spatial co-occurrence. Comprehensive experiments are performed on two challenging datasets: CityPersons and Caltech datasets. The proposed PSC-Net achieves state-of-the-art detection performance on both. On the heavy occluded (\textbf{HO}) set of CityPerosns test set, our PSC-Net obtains an absolute gain of 4.0\% in terms of log-average miss rate over the state-of-the-art with same backbone, input scale and without using additional VBB supervision. Further, PSC-Net improves the state-of-the-art from 37.9 to 34.8 in terms of log-average miss rate on Caltech (\textbf{HO}) test set
    corecore