1,910 research outputs found

    Reconstructing a logic for inductive proofs of properties of functional programs

    Get PDF
    A logical framework consisting of a polymorphic call-by-value functional language and a first-order logic on the values is presented, which is a reconstruction of the logic of the verification system VeriFun. The reconstruction uses contextual semantics to define the logical value of equations. It equates undefinedness and non-termination, which is a standard semantical approach. The main results of this paper are: Meta-theorems about the globality of several classes of theorems in the logic, and proofs of global correctness of transformations and deduction rules. The deduction rules of VeriFun are globally correct if rules depending on termination are appropriately formulated. The reconstruction also gives hints on generalizations of the VeriFun framework: reasoning on nonterminating expressions and functions, mutual recursive functions and abstractions in the data values, and formulas with arbitrary quantifier prefix could be allowed

    Normalisation for Some Quite Interesting Many-Valued Logics

    Get PDF
    In this paper, we consider a set of quite interesting three- and four-valued logics and prove the normalisation theorem for their natural deduction formulations. Among the logics in question are the Logic of Paradox, First Degree Entailment, Strong Kleene logic, and some of their implicative extensions, including RM3 and RM3⊃. Also, we present a detailed version of Prawitz’s proof of Nelson’s logic N4 and its extension by intuitionist negation

    Subformula and separation properties in natural deduction via small Kripke models

    Get PDF
    Various natural deduction formulations of classical, minimal, intuitionist, and intermediate propositional and first-order logics are presented and investigated with respect to satisfaction of the separation and subformula properties. The technique employed is, for the most part, semantic, based on general versions of the Lindenbaum and Lindenbaum–Henkin constructions. Careful attention is paid (i) to which properties of theories result in the presence of which rules of inference, and (ii) to restrictions on the sets of formulas to which the rules may be employed, restrictions determined by the formulas occurring as premises and conclusion of the invalid inference for which a counterexample is to be constructed. We obtain an elegant formulation of classical propositional logic with the subformula property and a singularly inelegant formulation of classical first-order logic with the subformula property, the latter, unfortunately, not a product of the strategy otherwise used throughout the article. Along the way, we arrive at an optimal strengthening of the subformula results for classical first-order logic obtained as consequences of normalization theorems by Dag Prawitz and Gunnar Stalmarck
    corecore