164,212 research outputs found

    The THUMOS Challenge on Action Recognition for Videos "in the Wild"

    Get PDF
    Automatically recognizing and localizing wide ranges of human actions has crucial importance for video understanding. Towards this goal, the THUMOS challenge was introduced in 2013 to serve as a benchmark for action recognition. Until then, video action recognition, including THUMOS challenge, had focused primarily on the classification of pre-segmented (i.e., trimmed) videos, which is an artificial task. In THUMOS 2014, we elevated action recognition to a more practical level by introducing temporally untrimmed videos. These also include `background videos' which share similar scenes and backgrounds as action videos, but are devoid of the specific actions. The three editions of the challenge organized in 2013--2015 have made THUMOS a common benchmark for action classification and detection and the annual challenge is widely attended by teams from around the world. In this paper we describe the THUMOS benchmark in detail and give an overview of data collection and annotation procedures. We present the evaluation protocols used to quantify results in the two THUMOS tasks of action classification and temporal detection. We also present results of submissions to the THUMOS 2015 challenge and review the participating approaches. Additionally, we include a comprehensive empirical study evaluating the differences in action recognition between trimmed and untrimmed videos, and how well methods trained on trimmed videos generalize to untrimmed videos. We conclude by proposing several directions and improvements for future THUMOS challenges.Comment: Preprint submitted to Computer Vision and Image Understandin

    Pyramidal Fisher Motion for Multiview Gait Recognition

    Full text link
    The goal of this paper is to identify individuals by analyzing their gait. Instead of using binary silhouettes as input data (as done in many previous works) we propose and evaluate the use of motion descriptors based on densely sampled short-term trajectories. We take advantage of state-of-the-art people detectors to define custom spatial configurations of the descriptors around the target person. Thus, obtaining a pyramidal representation of the gait motion. The local motion features (described by the Divergence-Curl-Shear descriptor) extracted on the different spatial areas of the person are combined into a single high-level gait descriptor by using the Fisher Vector encoding. The proposed approach, coined Pyramidal Fisher Motion, is experimentally validated on the recent `AVA Multiview Gait' dataset. The results show that this new approach achieves promising results in the problem of gait recognition.Comment: Submitted to International Conference on Pattern Recognition, ICPR, 201
    • …
    corecore