52,065 research outputs found
Reply [to “Comment on “Dynamics and energetics of bubble growth in magmas: Analytical formulation and numerical modeling” by A. A. Proussevitch and D. L. Sahagian”]
We have developed a model of diffusive and decompressive growth of a bubble in a finite region of melt which accounts for the energetics of volatile degassing and melt deformation as well as the interactions between magmatic system parameters such as viscosity, volatile concentration, and diffusivity. On the basis of our formulation we constructed a numerical model of bubble growth in volcanic systems. We conducted a parametric study in which a saturated magma is instantaneously decompressed to one bar and the sensitivity of the system to variations in various parameters is examined. Variations of each of seven parameters over practical ranges of magmatic conditions can change bubble growth rates by 2–4 orders of magnitude. Our numerical formulation allows determination of the relative importance of each parameter controlling bubble growth for a given or evolving set of magmatic conditions. An analysis of the modeling results reveals that the commonly invoked parabolic law for bubble growth dynamics R∼t1/2 is not applicable to magma degassing at low pressures or high water oversaturation but that a logarithmic relationship R∼log(t) is more appropriate during active bubble growth under certain conditions. A second aspect of our study involved a constant decompression bubble growth model in which an initially saturated magma was subjected to a constant rate of decompression. Model results for degassing of initially water‐saturated rhyolitic magma with a constant decompression rate show that oversaturation at the vent depends on the initial depth of magma ascent. On the basis of decompression history, explosive eruptions of silicic magmas are expected for magmas rising from chambers deeper than 2 km for ascent rates \u3e1–5 m s−1
Dynamics and energetics of bubble growth in magmas: Analytical formulation and numerical modeling
We have developed a model of diffusive and decompressive growth of a bubble in a finite region of melt which accounts for the energetics of volatile degassing and melt deformation as well as the interactions between magmatic system parameters such as viscosity, volatile concentration, and diffusivity. On the basis of our formulation we constructed a numerical model of bubble growth in volcanic systems. We conducted a parametric study in which a saturated magma is instantaneously decompressed to one bar and the sensitivity of the system to variations in various parameters is examined. Variations of each of seven parameters over practical ranges of magmatic conditions can change bubble growth rates by 2–4 orders of magnitude. Our numerical formulation allows determination of the relative importance of each parameter controlling bubble growth for a given or evolving set of magmatic conditions. An analysis of the modeling results reveals that the commonly invoked parabolic law for bubble growth dynamics R∼t1/2 is not applicable to magma degassing at low pressures or high water oversaturation but that a logarithmic relationship R∼log(t) is more appropriate during active bubble growth under certain conditions. A second aspect of our study involved a constant decompression bubble growth model in which an initially saturated magma was subjected to a constant rate of decompression. Model results for degassing of initially water‐saturated rhyolitic magma with a constant decompression rate show that oversaturation at the vent depends on the initial depth of magma ascent. On the basis of decompression history, explosive eruptions of silicic magmas are expected for magmas rising from chambers deeper than 2 km for ascent rates \u3e1–5 m s−1
Fronthaul data compression for Uplink CoMP in cloud radio access network (C-RAN)
The design of efficient wireless fronthaul connections for future heterogeneous networks incorporating emerging paradigms such as cloud radio access network has become a challenging task that requires the most effective utilisation of fronthaul network resources. In this paper, we propose to use distributed compression to reduce the fronthaul traffic in uplink Coordinated Multi-Point for cloud radio access network. Unlike the conventional approach where each coordinating point quantises and forwards its own observation to the processing centre, these observations are compressed before forwarding. At the processing centre, the decompression of the observations and the decoding of the user message are conducted in a successive manner. The essence of this approach is the optimisation of the distributed compression using an iterative algorithm to achieve maximal user rate with a given fronthaul rate. In other words, for a target user rate the generated fronthaul traffic is minimised. Moreover, joint decompression and decoding is studied and an iterative optimisation algorithm is devised accordingly. Finally, the analysis is extended to multi-user case and our results reveal that, in both dense and ultra-dense urban deployment scenarios, the usage of distributed compression can efficiently reduce the required fronthaul rate and a further reduction is obtained with joint operation
Abdominal decompression for abdominal compartment syndrome in critically ill patients: a retrospective study
Background. The abdominal compartment syndrome (ACS) refers to organ dysfunction that may occur as a result of increased intra-abdominal pressure (IAP). Successful management may require abdominal decompression and temporary abdominal closure (TAC). The aim of this study was to analyze the characteristics of patients requiring abdominal decompression, to describe the methods used for TAC, and to study the outcome of these patients. Methods. A series of critically ill patients who required abdominal decompression for ACS between January 2000 and March 2007 were reviewed retrospectively. Age, gender, severity of organ dysfunction before decompression and the cause of ACS as well as the type of abdominal closure system and length of ICU-stay were recorded. Definitive abdominal closure and in-hospital mortality were the main outcome parameters. Results. Eighteen patients with primary ACS and 6 with secondary ACS required decompressive laparotomy. Patients ages ranged from 18 to 89 years (mean 50.7). The median preoperative IAP was 26mmHg, and IAP decreased to 13mmHg after decompressive laparotomy. Organ function, as quantified by the SOFA scoring system, improved significantly after the intervention. Eight patients had immediate primary fascial closure after the decompressive procedure and 16 patients required TAC. The majority of the survivors underwent planned ventral hernia repair at a later stage. The mean length of stay in the ICU was 23 (+/- 16) days. Overall, fifteen patients survived (63%). Conclusions. Decompressive laparotomy was effective in reducing IAP and was associated with an improvement in organ function. In most of the patients, the abdomen could not be closed after decompression, and fascial repair was delayed
Glass Polymorphism in TIP4P/2005 Water: A Description Based on the Potential Energy Landscape Formalism
The potential energy landscape (PEL) formalism is a statistical mechanical
approach to describe supercooled liquids and glasses. Here we use the PEL
formalism to study the pressure-induced transformations between low-density
amorphous ice (LDA) and high-density amorphous ice (HDA) using computer
simulations of the TIP4P/2005 molecular model of water. We find that the
properties of the PEL sampled by the system during the LDA-HDA transformation
exhibit anomalous behavior. In particular, at conditions where the change in
density during the LDA-HDA transformation is approximately discontinuous,
reminiscent of a first-order phase transition, we find that (i) the inherent
structure (IS) energy, , is a concave function of the volume,
and (ii) the IS pressure, , exhibits a van der Waals-like loop.
In addition, the curvature of the PEL at the IS is anomalous, a non-monotonic
function of . In agreement with previous studies, our work suggests that
conditions (i) and (ii) are necessary (but not sufficient) signatures of the
PEL for the LDA-HDA transformation to be reminiscent of a first-order phase
transition. We also find that one can identify two different regions of the
PEL, one associated to LDA and another to HDA. Our computer simulations are
performed using a wide range of compression/decompression and cooling rates. In
particular, our slowest cooling rate (0.01 K/ns) is within the experimental
rates employed in hyperquenching experiments to produce LDA. Interestingly, the
LDA-HDA transformation pressure that we obtain at K and at different
rates extrapolates remarkably well to the corresponding experimental pressure.Comment: Manuscript and Supplementary Materia
Potential Energy Landscape of the Apparent First-Order Phase Transition between Low-Density and High-Density Amorphous Ice
The potential energy landscape (PEL) formalism is a valuable approach within
statistical mechanics for describing supercooled liquids and glasses. Here we
use the PEL formalism and computer simulations to study the pressure-induced
transformations between low-density amorphous ice (LDA) and high-density
amorphous ice (HDA) at different temperatures. We employ the ST2 water model
for which the LDA-HDA transformations are remarkably sharp, similar to what is
observed in experiments, and reminiscent of a first-order phase transition. Our
results are consistent with the view that LDA and HDA configurations are
associated with two distinct regions (megabasins) of the PEL that are separated
by a potential energy barrier. At higher temperature, we find that low-density
liquid (LDL) configurations are located in the same megabasin as LDA, and that
high-density liquid (HDL) configurations are located in the same megabasin as
HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations
occur along paths that interconnect these two megabasins, but that the path
followed by the liquid is different than the path followed by the amorphous
solid. At higher pressure, we also study the liquid-to-ice-VII first-order
phase transition, and find that the behavior of the PEL properties across this
transition are qualitatively similar to the changes found during the LDA-HDA
transformation. This similarity supports the interpretation that the LDA-HDA
transformation is a first-order-like phase transition between
out-of-equilibrium states.Comment: 29 pages, 8 figure
How to Solve the Fronthaul Traffic Congestion Problem in H-CRAN?
The design of efficient wireless fronthaul connections for future heterogeneous networks incorporating emerging paradigms such as heterogeneous cloud radio access network (H-CRAN) has become a challenging task that requires the most effective utilization of fronthaul network resources. In this paper, we propose and analyze possible solutions to facilitate the fronthaul traffic congestion in the scenario of Coordinated Multi-Point (CoMP) for 5G cellular traffic which is expected to reach ZetaByte by 2017. In particular, we propose to use distributed compression to reduce the fronthaul traffic for H-CRAN. Unlike the conventional approach where each coordinating point quantizes and forwards its own observation to the processing centre, these observations are compressed before forwarding. At the processing centre, the decompression of the observations and the decoding of the user messages are conducted in a joint manner. Our results reveal that, in both dense and ultra-dense urban small cell deployment scenarios, the usage of distributed compression can efficiently reduce the required fronthaul rate by more than 50% via joint operation
Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges
As a promising paradigm for fifth generation (5G) wireless communication
systems, cloud radio access networks (C-RANs) have been shown to reduce both
capital and operating expenditures, as well as to provide high spectral
efficiency (SE) and energy efficiency (EE). The fronthaul in such networks,
defined as the transmission link between a baseband unit (BBU) and a remote
radio head (RRH), requires high capacity, but is often constrained. This
article comprehensively surveys recent advances in fronthaul-constrained
C-RANs, including system architectures and key techniques. In particular, key
techniques for alleviating the impact of constrained fronthaul on SE/EE and
quality of service for users, including compression and quantization,
large-scale coordinated processing and clustering, and resource allocation
optimization, are discussed. Open issues in terms of software-defined
networking, network function virtualization, and partial centralization are
also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin
note: text overlap with arXiv:1407.3855 by other author
Efficacy of interspinous device versus surgical decompression in the treatment of lumbar spinal stenosis: a modified network analysis.
Study designSystematic review using a modified network analysis.ObjectivesTo compare the effectiveness and morbidity of interspinous-device placement versus surgical decompression for the treatment of lumbar spinal stenosis.SummaryTraditionally, the most effective treatment for degenerative lumbar spinal stenosis is through surgical decompression. Recently, interspinous devices have been used in lieu of standard laminectomy.MethodsA review of the English-language literature was undertaken for articles published between 1970 and March 2010. Electronic databases and reference lists of key articles were searched to identify studies comparing surgical decompression with interspinous-device placement for the treatment of lumbar spinal stenosis. First, studies making the direct comparison (cohort or randomized trials) were searched. Second, randomized controlled trials (RCTs) comparing each treatment to conservative management were searched to allow for an indirect comparison through a modified network analysis approach. Comparison studies involving simultaneous decompression with placement of an interspinous device were not included. Studies that did not have a comparison group were not included since a treatment effect could not be calculated. Two independent reviewers assessed the strength of evidence using the GRADE criteria assessing quality, quantity, and consistency of results. The strengths of evidence for indirect comparisons were downgraded. Disagreements were resolved by consensus.ResultsWe identified five studies meeting our inclusion criteria. No RCTs or cohort studies were identified that made the direct comparison of interspinous-device placement with surgical decompression. For the indirect comparison, three RCTs compared surgical decompression to conservative management and two RCTs compared interspinous-device placement to conservative management. There was low evidence supporting greater treatment effects for interspinous-device placement compared to decompression for disability and pain outcomes at 12 months. There was low evidence demonstrating little to no difference in treatment effects between the groups for walking distance and complication rates.ConclusionThe indirect treatment effect for disability and pain favors the interspinous device compared to decompression. The low evidence suggests that any further research is very likely to have an important impact on the confidence in the estimate of effect and is likely to change the estimate. No significant treatment effect differences were observed for postoperative walking distance improvement or complication rates; however, findings should be considered with caution because of indirect comparisons and short follow-up periods
Experimental Animal Decompressions to a Near-Vacuum Environment
Rapid decompression of dogs to near vacuum environment to estimate times of consciousness, collapse, and surviva
- …
