3 research outputs found

    Decomposing GR(1) Games with Singleton Liveness Guarantees for Efficient Synthesis

    Get PDF
    Temporal logic based synthesis approaches are often used to find trajectories that are correct-by-construction for tasks in systems with complex behavior. Some examples of such tasks include synchronization for multi-agent hybrid systems, reactive motion planning for robots. However, the scalability of such approaches is of concern and at times a bottleneck when transitioning from theory to practice. In this paper, we identify a class of problems in the GR(1) fragment of linear-time temporal logic (LTL) where the synthesis problem allows for a decomposition that enables easy parallelization. This decomposition also reduces the alternation depth, resulting in more efficient synthesis. A multi-agent robot gridworld example with coordination tasks is presented to demonstrate the application of the developed ideas and also to perform empirical analysis for benchmarking the decomposition-based synthesis approach

    Parallelizing Synthesis from Temporal Logic Specifications by Identifying Equicontrollable States

    Get PDF
    For the synthesis of correct-by-construction control policies from temporal logic specifications the scalability of the synthesis algorithms is often a bottleneck. In this paper, we parallelize synthesis from specifications in the GR(1) fragment of linear temporal logic by introducing a hierarchical procedure that allows decoupling of the fixpoint computations. The state space is partitioned into equicontrollable sets using solutions to parametrized games that arise from decomposing the original GR(1) game into smaller reachability-persistence games. Following the partitioning, another synthesis problem is formulated for composing the strategies from the decomposed reachability games. The formulation guarantees that composing the synthesized controllers ensures satisfaction of the given GR(1) property. Experiments with robot planning problems demonstrate good performance of the approach

    Parallelizing Synthesis from Temporal Logic Specifications by Identifying Equicontrollable States

    Get PDF
    For the synthesis of correct-by-construction control policies from temporal logic specifications the scalability of the synthesis algorithms is often a bottleneck. In this paper, we parallelize synthesis from specifications in the GR(1) fragment of linear temporal logic by introducing a hierarchical procedure that allows decoupling of the fixpoint computations. The state space is partitioned into equicontrollable sets using solutions to parametrized games that arise from decomposing the original GR(1) game into smaller reachability-persistence games. Following the partitioning, another synthesis problem is formulated for composing the strategies from the decomposed reachability games. The formulation guarantees that composing the synthesized controllers ensures satisfaction of the given GR(1) property. Experiments with robot planning problems demonstrate good performance of the approach
    corecore