3 research outputs found

    Brain rhythms of pain

    Get PDF
    Pain is an integrative phenomenon that results from dynamic interactions between sensory and contextual (i.e., cognitive, emotional, and motivational) processes. In the brain the experience of pain is associated with neuronal oscillations and synchrony at different frequencies. However, an overarching framework for the significance of oscillations for pain remains lacking. Recent concepts relate oscillations at different frequencies to the routing of information flow in the brain and the signaling of predictions and prediction errors. The application of these concepts to pain promises insights into how flexible routing of information flow coordinates diverse processes that merge into the experience of pain. Such insights might have implications for the understanding and treatment of chronic pain

    Brain dysfunction in chronic pain patients assessed by resting-state electroencephalography

    Get PDF
    Chronic pain is a common and severely disabling disease whose treatment is often unsatisfactory. Insights into the brain mechanisms of chronic pain promise to advance the understanding of the underlying pathophysiology and might help to develop disease markers and novel treatments. Here, we systematically exploited the potential of electroencephalography to determine abnormalities of brain function during the resting state in chronic pain. To this end, we performed state-of-the-art analyses of oscillatory brain activity, brain connectivity, and brain networks in 101 patients of either sex suffering from chronic pain. The results show that global and local measures of brain activity did not differ between chronic pain patients and a healthy control group. However, we observed significantly increased connectivity at theta (4-8 Hz) and gamma (>60 Hz) frequencies in frontal brain areas as well as global network reorganization at gamma frequencies in chronic pain patients. Furthermore, a machine learning algorithm could differentiate between patients and healthy controls with an above-chance accuracy of 57%, mostly based on frontal connectivity. These results suggest that increased theta and gamma synchrony in frontal brain areas are involved in the pathophysiology of chronic pain. Although substantial challenges concerning the reproducibility of the findings and the accuracy, specificity, and validity of potential electroencephalography-based disease markers remain to be overcome, our study indicates that abnormal frontal synchrony at theta and gamma frequencies might be promising targets for noninvasive brain stimulation and/or neurofeedback approaches
    corecore