600 research outputs found

    Distributed Full-duplex via Wireless Side Channels: Bounds and Protocols

    Full text link
    In this paper, we study a three-node full-duplex network, where a base station is engaged in simultaneous up- and downlink communication in the same frequency band with two half-duplex mobile nodes. To reduce the impact of inter- node interference between the two mobile nodes on the system capacity, we study how an orthogonal side-channel between the two mobile nodes can be leveraged to achieve full-duplex-like multiplexing gains. We propose and characterize the achievable rates of four distributed full-duplex schemes, labeled bin-and- cancel, compress-and-cancel, estimate-and-cancel and decode- and-cancel. Of the four, bin-and-cancel is shown to achieve within 1 bit/s/Hz of the capacity region for all values of channel parameters. In contrast, the other three schemes achieve the near-optimal performance only in certain regimes of channel values. Asymptotic multiplexing gains of all proposed schemes are derived to show that the side-channel is extremely effective in regimes where inter-node interference has the highest impact.Comment: Published in IEEE Transactions on Wireless Communications, August 201

    Multi-Antenna Assisted Virtual Full-Duplex Relaying with Reliability-Aware Iterative Decoding

    Full text link
    In this paper, a multi-antenna assisted virtual full-duplex (FD) relaying with reliability-aware iterative decoding at destination node is proposed to improve system spectral efficiency and reliability. This scheme enables two half-duplex relay nodes, mimicked as FD relaying, to alternatively serve as transmitter and receiver to relay their decoded data signals regardless the decoding errors, meanwhile, cancel the inter-relay interference with QR-decomposition. Then, by deploying the reliability-aware iterative detection/decoding process, destination node can efficiently mitigate inter-frame interference and error propagation effect at the same time. Simulation results show that, without extra cost of time delay and signalling overhead, our proposed scheme outperforms the conventional selective decode-and-forward (S-DF) relaying schemes, such as cyclic redundancy check based S-DF relaying and threshold based S-DF relaying, by up to 8 dB in terms of bit-error-rate.Comment: 6 pages, 4 figures, conference paper has been submitte

    Non-Linear Digital Self-Interference Cancellation for In-Band Full-Duplex Radios Using Neural Networks

    Full text link
    Full-duplex systems require very strong self-interference cancellation in order to operate correctly and a significant part of the self-interference signal is due to non-linear effects created by various transceiver impairments. As such, linear cancellation alone is usually not sufficient and sophisticated non-linear cancellation algorithms have been proposed in the literature. In this work, we investigate the use of a neural network as an alternative to the traditional non-linear cancellation method that is based on polynomial basis functions. Measurement results from a full-duplex testbed demonstrate that a small and simple feed-forward neural network canceler works exceptionally well, as it can match the performance of the polynomial non-linear canceler with significantly lower computational complexity.Comment: Presented at the IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) 201

    Linear Precoders for Non-Regenerative Asymmetric Two-way Relaying in Cellular Systems

    Full text link
    Two-way relaying (TWR) reduces the spectral-efficiency loss caused in conventional half-duplex relaying. TWR is possible when two nodes exchange data simultaneously through a relay. In cellular systems, data exchange between base station (BS) and users is usually not simultaneous e.g., a user (TUE) has uplink data to transmit during multiple access (MAC) phase, but does not have downlink data to receive during broadcast (BC) phase. This non-simultaneous data exchange will reduce TWR to spectrally-inefficient conventional half-duplex relaying. With infrastructure relays, where multiple users communicate through a relay, a new transmission protocol is proposed to recover the spectral loss. The BC phase following the MAC phase of TUE is now used by the relay to transmit downlink data to another user (RUE). RUE will not be able to cancel the back-propagating interference. A structured precoder is designed at the multi-antenna relay to cancel this interference. With multiple-input multiple-output (MIMO) nodes, the proposed precoder also triangulates the compound MAC and BC phase MIMO channels. The channel triangulation reduces the weighted sum-rate optimization to power allocation problem, which is then cast as a geometric program. Simulation results illustrate the effectiveness of the proposed protocol over conventional solutions.Comment: 30 pages, 7 figures, submitted to IEEE Transactions on Wireless Communication
    • …
    corecore