2 research outputs found

    Can User-Centered Reinforcement Learning Allow a Robot to Attract Passersby without Causing Discomfort?

    Full text link
    The aim of our study was to develop a method by which a social robot can greet passersby and get their attention without causing them to suffer discomfort.A number of customer services have recently come to be provided by social robots rather than people, including, serving as receptionists, guides, and exhibitors. Robot exhibitors, for example, can explain products being promoted by the robot owners. However, a sudden greeting by a robot can startle passersby and cause discomfort to passersby.Social robots should thus adapt their mannerisms to the situation they face regarding passersby.We developed a method for meeting this requirement on the basis of the results of related work. Our proposed method, user-centered reinforcement learning, enables robots to greet passersby and get their attention without causing them to suffer discomfort (p<0.01) .The results of an experiment in the field, an office entrance, demonstrated that our method meets this requirement.Comment: Accepted to The 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019

    Proactive Interaction Framework for Intelligent Social Receptionist Robots

    Full text link
    Proactive human-robot interaction (HRI) allows the receptionist robots to actively greet people and offer services based on vision, which has been found to improve acceptability and customer satisfaction. Existing approaches are either based on multi-stage decision processes or based on end-to-end decision models. However, the rule-based approaches require sedulous expert efforts and only handle minimal pre-defined scenarios. On the other hand, existing works with end-to-end models are limited to very general greetings or few behavior patterns (typically less than 10). To address those challenges, we propose a new end-to-end framework, the TransFormer with Visual Tokens for Human-Robot Interaction (TFVT-HRI). The proposed framework extracts visual tokens of relative objects from an RGB camera first. To ensure the correct interpretation of the scenario, a transformer decision model is then employed to process the visual tokens, which is augmented with the temporal and spatial information. It predicts the appropriate action to take in each scenario and identifies the right target. Our data is collected from an in-service receptionist robot in an office building, which is then annotated by experts for appropriate proactive behavior. The action set includes 1000+ diverse patterns by combining language, emoji expression, and body motions. We compare our model with other SOTA end-to-end models on both offline test sets and online user experiments in realistic office building environments to validate this framework. It is demonstrated that the decision model achieves SOTA performance in action triggering and selection, resulting in more humanness and intelligence when compared with the previous reactive reception policies.Comment: Accepted to 2021 IEEE International Conference on Robotics and Automation (ICRA
    corecore