3,594 research outputs found

    Complexity and Expressivity of Branching- and Alternating-Time Temporal Logics with Finitely Many Variables

    Full text link
    We show that Branching-time temporal logics CTL and CTL*, as well as Alternating-time temporal logics ATL and ATL*, are as semantically expressive in the language with a single propositional variable as they are in the full language, i.e., with an unlimited supply of propositional variables. It follows that satisfiability for CTL, as well as for ATL, with a single variable is EXPTIME-complete, while satisfiability for CTL*, as well as for ATL*, with a single variable is 2EXPTIME-complete,--i.e., for these logics, the satisfiability for formulas with only one variable is as hard as satisfiability for arbitrary formulas.Comment: Prefinal version of the published pape

    A Logic for Constraint-based Security Protocol Analysis

    Get PDF
    We propose PS-LTL, a pure-past security linear temporal logic that allows the specification of a variety of authentication, secrecy and data freshness properties. Furthermore, we present a sound and complete decision procedure to establish the validity of security properties for symbolic execution traces, and show the integration with constraint-based analysis techniques

    Gentzen-type axiomatization for PAL

    Get PDF
    AbstractThe aim of propositional algorithmic logic (PAL) is to investigate the properties of simple nondeterministic while-program schemes on propositional level. We present finite, cut-free, Gentzen-type axiomatization of PAL. As a corollary from completeness theorem, we obtain the small-model theorem and algorithm for checking the validity of PAL formulas

    Optimal methods for reasoning about actions and plans in multi-agent systems

    Get PDF
    Cet travail présente une solution au problÚme du décor inférenciel. Nous réalisons cela en donnant une éducation polynomiale d'un fragment du calcul des situations vers la logique épistémique dynamique (DEL). En suite, une nouvelle méthode de preuve pour DEL, dont la complexité algorithmique est inférieure à celle de la méthode de Reiter pour le calcul de situations, est proposée. Ce travail présente aussi une nouvelle logique pour raisonner sur les actions. Cette logique permet d'exprimer formellement "qu'il existe une suite d'action conduisant au but". L'idée étant que, avec la quantification sur les actions, la planification devient un problÚme de validité. Une axiomatisation et quelques résultats d'expressivité sont donnés, ainsi qu'une méthode de preuve basée sur les tableaux sémantiques.This work presents a solution to the inferential frame problem. We do so by providing a polynomial reduction from a fragment of situation calculus to espistemic dynamic logic (DEL). Then, a novel proof method for DEL, such that the computational complexity is much lower than that of Retier's proof method for situation caluculs, is proposed. This work also presents a new logic for reasoning about actions. This logic allows to formally express that "there exists a sequence of actions that leads to the goal". The idea is that, with quantification over actions, planning can become a validity problem. An axiomatisation and some expressivity results are provided, as well as a proof method based on sematic tableaux

    Some observations regarding the demythification of the comparative advantage’s principle within Manoilescu generalized scheme

    Get PDF
    The validity in time of the comparative advantage’s principle, also of its application’s denial, can generate certain misunderstandings in the good exchange’s observation for an outsider (common sense), including the expert from other economics’ areas. The resolution for these cases can be made through checking requires’ discharging of the analytical economicity’s principle. In these conditions it can be noticed if the schemes, deducted in the analytical decomposition’s basis of the standard actions, can be used in the more precise and easier measurement than through empirical calculations in order to determine the comparative advantage’s size, of the gains from trade and the productivity effect. Manoilescu generalized scheme has, from this perspective the two main characteristics: its building has started from the empirical reality’s study of the exchange phenomena and the observation has been made only inside the economics’ borders. This way the scheme sustains the unitary explanations’ approaches of some different angles of understanding the comparative advantage on basis of some analytical efforts of other researchers. The suggested scheme separates the strictly economic analysis from the one inside the politic area (commercial politics), also of the productivity effect from more exact connections, decompounding the measurement in two steps. The identification through dialectical judgements, made as a continuation of the analytical ones, of the concordance between the built analytical reality and the empirical one, assures the check of the analytical economy’s principle. This step contributes to the permanent validity’s grounding of the comparative advantage’s principle in the exchange connections within the competitive economies. Meanwhile, the demythification of its full and permanent usage is also supported, in the way of its maximum potential’s capitalization in the manufactured and exchanged goods’ choice. The comparative advantage’s principle is nothing but an application of the minimum effort’s principle – the last one having a wider area of action – and will probably remain in the economies based on the social, competitive, monetary or natural relations.comparative advantage; Manoilescu generalized scheme; measurement; analytical economy principle; minimum effort; total factor productivity; epistemology

    Incremental Predictive Process Monitoring: How to Deal with the Variability of Real Environments

    Full text link
    A characteristic of existing predictive process monitoring techniques is to first construct a predictive model based on past process executions, and then use it to predict the future of new ongoing cases, without the possibility of updating it with new cases when they complete their execution. This can make predictive process monitoring too rigid to deal with the variability of processes working in real environments that continuously evolve and/or exhibit new variant behaviors over time. As a solution to this problem, we propose the use of algorithms that allow the incremental construction of the predictive model. These incremental learning algorithms update the model whenever new cases become available so that the predictive model evolves over time to fit the current circumstances. The algorithms have been implemented using different case encoding strategies and evaluated on a number of real and synthetic datasets. The results provide a first evidence of the potential of incremental learning strategies for predicting process monitoring in real environments, and of the impact of different case encoding strategies in this setting

    To Be Announced

    Full text link
    In this survey we review dynamic epistemic logics with modalities for quantification over information change. Of such logics we present complete axiomatizations, focussing on axioms involving the interaction between knowledge and such quantifiers, we report on their relative expressivity, on decidability and on the complexity of model checking and satisfiability, and on applications. We focus on open problems and new directions for research

    New Directions in Model Checking Dynamic Epistemic Logic

    Get PDF
    Dynamic Epistemic Logic (DEL) can model complex information scenarios in a way that appeals to logicians. However, its existing implementations are based on explicit model checking which can only deal with small models, so we do not know how DEL performs for larger and real-world problems. For temporal logics, in contrast, symbolic model checking has been developed and successfully applied, for example in protocol and hardware verification. Symbolic model checkers for temporal logics are very efficient and can deal with very large models. In this thesis we build a bridge: new faithful representations of DEL models as so-called knowledge and belief structures that allow for symbolic model checking. For complex epistemic and factual change we introduce transformers, a symbolic replacement for action models. Besides a detailed explanation of the theory, we present SMCDEL: a Haskell implementation of symbolic model checking for DEL using Binary Decision Diagrams. Our new methods can solve well-known benchmark problems in epistemic scenarios much faster than existing methods for DEL. We also compare its performance to to existing model checkers for temporal logics and show that DEL can compete with established frameworks. We zoom in on two specific variants of DEL for concrete applications. First, we introduce Public Inspection Logic, a new framework for the knowledge of variables and its dynamics. Second, we study the dynamic gossip problem and how it can be analyzed with epistemic logic. We show that existing gossip protocols can be improved, but that no perfect strengthening of "Learn New Secrets" exists
    • 

    corecore