130 research outputs found

    Data science for buildings, a multi-scale approach bridging occupants to smart-city energy planning

    Get PDF

    Data science for buildings, a multi-scale approach bridging occupants to smart-city energy planning

    Get PDF
    In a context of global carbon emission reduction goals, buildings have been identified to detain valuable energy-saving abilities. With the exponential increase of smart, connected building automation systems, massive amounts of data are now accessible for analysis. These coupled with powerful data science methods and machine learning algorithms present a unique opportunity to identify untapped energy-saving potentials from field information, and effectively turn buildings into active assets of the built energy infrastructure.However, the diversity of building occupants, infrastructures, and the disparities in collected information has produced disjointed scales of analytics that make it tedious for approaches to scale and generalize over the building stock.This coupled with the lack of standards in the sector has hindered the broader adoption of data science practices in the field, and engendered the following questioning:How can data science facilitate the scaling of approaches and bridge disconnected spatiotemporal scales of the built environment to deliver enhanced energy-saving strategies?This thesis focuses on addressing this interrogation by investigating data-driven, scalable, interpretable, and multi-scale approaches across varying types of analytical classes. The work particularly explores descriptive, predictive, and prescriptive analytics to connect occupants, buildings, and urban energy planning together for improved energy performances.First, a novel multi-dimensional data-mining framework is developed, producing distinct dimensional outlines supporting systematic methodological approaches and refined knowledge discovery. Second, an automated building heat dynamics identification method is put forward, supporting large-scale thermal performance examination of buildings in a non-intrusive manner. The method produced 64\% of good quality model fits, against 14\% close, and 22\% poor ones out of 225 Dutch residential buildings. %, which were open-sourced in the interest of developing benchmarks. Third, a pioneering hierarchical forecasting method was designed, bridging individual and aggregated building load predictions in a coherent, data-efficient fashion. The approach was evaluated over hierarchies of 37, 140, and 383 nodal elements and showcased improved accuracy and coherency performances against disjointed prediction systems.Finally, building occupants and urban energy planning strategies are investigated under the prism of uncertainty. In a neighborhood of 41 Dutch residential buildings, occupants were determined to significantly impact optimal energy community designs in the context of weather and economic uncertainties.Overall, the thesis demonstrated the added value of multi-scale approaches in all analytical classes while fostering best data-science practices in the sector from benchmarks and open-source implementations

    Relationship between Solar Flux and Sunspot Activity Using Several Regression Models

    Get PDF
    This study examines the correlation and prediction between sunspots and solar flux, two closely related factors associated with solar activity, covering the period from 2005 to 2022. The study utilizes a combination of linear regression analysis and the ARIMA prediction method to analyze the relationship between these factors and forecast their values. The analysis results reveal a significant positive correlation between sunspots and solar flux. Additionally, the ARIMA prediction method suggests that the SARIMA model can effectively forecast the values of both sunspots and solar flux for a 12-period timeframe. However, it is essential to note that this study solely focuses on correlation analysis and does not establish a causal relationship. Nonetheless, the findings contribute valuable insights into future variations in solar flux and sunspot numbers, thereby aiding scientists in comprehending and predicting solar activity's potential impact on Earth. The study recommends further research to explore additional factors that may influence the relationship between sunspots and solar flux, extend the research period to enhance the accuracy of solar activity predictions and investigate alternative prediction methods to improve the precision of forecasts

    Data Science, Data Visualization, and Digital Twins

    Get PDF
    Real-time, web-based, and interactive visualisations are proven to be outstanding methodologies and tools in numerous fields when knowledge in sophisticated data science and visualisation techniques is available. The rationale for this is because modern data science analytical approaches like machine/deep learning or artificial intelligence, as well as digital twinning, promise to give data insights, enable informed decision-making, and facilitate rich interactions among stakeholders.The benefits of data visualisation, data science, and digital twinning technologies motivate this book, which exhibits and presents numerous developed and advanced data science and visualisation approaches. Chapters cover such topics as deep learning techniques, web and dashboard-based visualisations during the COVID pandemic, 3D modelling of trees for mobile communications, digital twinning in the mining industry, data science libraries, and potential areas of future data science development
    corecore