518 research outputs found

    Verification for Timed Automata extended with Unbounded Discrete Data Structures

    Full text link
    We study decidability of verification problems for timed automata extended with unbounded discrete data structures. More detailed, we extend timed automata with a pushdown stack. In this way, we obtain a strong model that may for instance be used to model real-time programs with procedure calls. It is long known that the reachability problem for this model is decidable. The goal of this paper is to identify subclasses of timed pushdown automata for which the language inclusion problem and related problems are decidable

    Dense-choice Counter Machines revisited

    Full text link
    This paper clarifies the picture about Dense-choice Counter Machines, which have been less studied than (discrete) Counter Machines. We revisit the definition of "Dense Counter Machines" so that it now extends (discrete) Counter Machines, and we provide new undecidability and decidability results. Using the first-order additive mixed theory of reals and integers, we give a logical characterization of the sets of configurations reachable by reversal-bounded Dense-choice Counter Machines

    Weak Singular Hybrid Automata

    Full text link
    The framework of Hybrid automata, introduced by Alur, Courcourbetis, Henzinger, and Ho, provides a formal modeling and analysis environment to analyze the interaction between the discrete and the continuous parts of cyber-physical systems. Hybrid automata can be considered as generalizations of finite state automata augmented with a finite set of real-valued variables whose dynamics in each state is governed by a system of ordinary differential equations. Moreover, the discrete transitions of hybrid automata are guarded by constraints over the values of these real-valued variables, and enable discontinuous jumps in the evolution of these variables. Singular hybrid automata are a subclass of hybrid automata where dynamics is specified by state-dependent constant vectors. Henzinger, Kopke, Puri, and Varaiya showed that for even very restricted subclasses of singular hybrid automata, the fundamental verification questions, like reachability and schedulability, are undecidable. In this paper we present \emph{weak singular hybrid automata} (WSHA), a previously unexplored subclass of singular hybrid automata, and show the decidability (and the exact complexity) of various verification questions for this class including reachability (NP-Complete) and LTL model-checking (PSPACE-Complete). We further show that extending WSHA with a single unrestricted clock or extending WSHA with unrestricted variable updates lead to undecidability of reachability problem

    Weak Alternating Timed Automata

    Full text link
    Alternating timed automata on infinite words are considered. The main result is a characterization of acceptance conditions for which the emptiness problem for these automata is decidable. This result implies new decidability results for fragments of timed temporal logics. It is also shown that, unlike for MITL, the characterisation remains the same even if no punctual constraints are allowed

    On the Path-Width of Integer Linear Programming

    Full text link
    We consider the feasibility problem of integer linear programming (ILP). We show that solutions of any ILP instance can be naturally represented by an FO-definable class of graphs. For each solution there may be many graphs representing it. However, one of these graphs is of path-width at most 2n, where n is the number of variables in the instance. Since FO is decidable on graphs of bounded path- width, we obtain an alternative decidability result for ILP. The technique we use underlines a common principle to prove decidability which has previously been employed for automata with auxiliary storage. We also show how this new result links to automata theory and program verification.Comment: In Proceedings GandALF 2014, arXiv:1408.556
    corecore