5 research outputs found

    Towards Norm Realization in Institutions Mediating Human-Robot Societies

    Get PDF
    Social norms are the understandings that govern the behavior of members of a society. As such, they regulate communication, cooperation and other social interactions. Robots capable of reasoning about social norms are more likely to be recognized as an extension of our human society. However, norms stated in a form of the human language are inherently vague and abstract. This allows for applying norms in a variety of situations, but if the robots are to adhere to social norms, they must be capable of translating abstract norms to the robotic language. In this paper we use a notion of institution to realize social norms in real robotic systems. We illustrate our approach in a case study, where we translate abstract norms into concrete constraints on cooperative behaviors of humans and robots. We investigate the feasibility of our approach and quantitatively evaluate the performance of our framework in 30 real experiments with user-based evaluation with 40 participants

    Collision Free Navigation of a Multi-Robot Team for Intruder Interception

    Full text link
    In this report, we propose a decentralised motion control algorithm for the mobile robots to intercept an intruder entering (k-intercepting) or escaping (e-intercepting) a protected region. In continuation, we propose a decentralized navigation strategy (dynamic-intercepting) for a multi-robot team known as predators to intercept the intruders or in the other words, preys, from escaping a siege ring which is created by the predators. A necessary and sufficient condition for the existence of a solution of this problem is obtained. Furthermore, we propose an intelligent game-based decision-making algorithm (IGD) for a fleet of mobile robots to maximize the probability of detection in a bounded region. We prove that the proposed decentralised cooperative and non-cooperative game-based decision-making algorithm enables each robot to make the best decision to choose the shortest path with minimum local information. Then we propose a leader-follower based collision-free navigation control method for a fleet of mobile robots to traverse an unknown cluttered environment where is occupied by multiple obstacles to trap a target. We prove that each individual team member is able to traverse safely in the region, which is cluttered by many obstacles with any shapes to trap the target while using the sensors in some indefinite switching points and not continuously, which leads to saving energy consumption and increasing the battery life of the robots consequently. And finally, we propose a novel navigation strategy for a unicycle mobile robot in a cluttered area with moving obstacles based on virtual field force algorithm. The mathematical proof of the navigation laws and the computer simulations are provided to confirm the validity, robustness, and reliability of the proposed methods
    corecore