1,054 research outputs found

    Decentralized robust control of uncertain Markov jump parameter systems via output feedback

    Full text link
    This paper addresses the problem of decentralized robust stabilization and control for a class of uncertain Markov jump parameter systems. Control is via output feedback and knowledge of the discrete Markov state. It is shown that the existence of a solution to a collection of mode-dependent coupled algebraic Riccati equations and inequalities, which depend on certain additional parameters, is both necessary and sufficient for the existence of a robust decentralized switching controller. A guaranteed upper bound on robust performance is also given. To obtain a controller which satisfies this bound, an optimization problem involving rank constrained linear matrix inequalities is introduced, and a numerical approach for solving this problem is presented. To demonstrate the efficacy of the proposed approach, an example stabilization problem for a power system comprising three generators and one on-load tap changing transformer is considered. © 2007 Elsevier Ltd. All rights reserved

    Design of switching damping controllers for power systems based on a Markov jump parameter system approach

    Full text link
    The application of a new technique, based on the theory of Markov Jump Parameter Systems (MJPS), to the problem of designing controllers to damp power system oscillations is presented in this paper. This problem is very difficult to address, mainly because these controllers are required to have an output feedback decentralized structure. The technique relies on the statistical knowledge about the system operating conditions to provide less conservative controllers than other modern robust control approaches. The influence of the system interconnections over its modes of oscillation is reduced by means of a proper control design formulation involving Integral Quadratic Constraints. The discrete nature of some typical events in power systems (such as line tripping or load switching) is adequately modeled by the MJPS approach, therefore allowing the controller to withstand such abrupt changes in the operating conditions of the system, as shown in the results. © 2006 IEEE

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    Guaranteed Cost Tracking for Uncertain Coupled Multi-agent Systems Using Consensus over a Directed Graph

    Full text link
    This paper considers the leader-follower control problem for a linear multi-agent system with directed communication topology and linear nonidentical uncertain coupling subject to integral quadratic constraints (IQCs). A consensus-type control protocol is proposed based on each agent's states relative to its neighbors and leader's state relative to agents which observe the leader. A sufficient condition is obtained by overbounding the cost function. Based on this sufficient condition, a computational algorithm is introduced to minimize the proposed guaranteed bound on tracking performance, which yields a suboptimal bound on the system consensus control and tracking performance. The effectiveness of the proposed method is demonstrated using a simulation example.Comment: Accepted for presentation at the 2013 Australian Control conferenc

    Control design for interconnected power systems with OLTCs via robust decentralized control

    Full text link
    This paper addresses the problem of designing a decentralized control of interconnected power systems, with OLTC and SVCs, under large changes in real and reactive loads that cause large structural changes in the system model. In addition to this, small changes in load are regulated by small disturbance controllers whose gains are adjusted for variations in power system model due to large changes in loads. The only feedback needed by subsystem controllers is the state of the subsystem itself. The design is carried out within a large-scale Markov jump parameter systems framework. In this paper, unlike other control schemes, OLTC transformers are used to damp power-angle oscillations. Simulation results are presented to demonstrate the performance of the designed controller. © 2006 IEEE
    corecore