115,184 research outputs found
Improved Memory-Bounded Dynamic Programming for Decentralized POMDPs
Memory-Bounded Dynamic Programming (MBDP) has proved extremely effective in
solving decentralized POMDPs with large horizons. We generalize the algorithm
and improve its scalability by reducing the complexity with respect to the
number of observations from exponential to polynomial. We derive error bounds
on solution quality with respect to this new approximation and analyze the
convergence behavior. To evaluate the effectiveness of the improvements, we
introduce a new, larger benchmark problem. Experimental results show that
despite the high complexity of decentralized POMDPs, scalable solution
techniques such as MBDP perform surprisingly well.Comment: Appears in Proceedings of the Twenty-Third Conference on Uncertainty
in Artificial Intelligence (UAI2007
Optimizing Memory-Bounded Controllers for Decentralized POMDPs
We present a memory-bounded optimization approach for solving
infinite-horizon decentralized POMDPs. Policies for each agent are represented
by stochastic finite state controllers. We formulate the problem of optimizing
these policies as a nonlinear program, leveraging powerful existing nonlinear
optimization techniques for solving the problem. While existing solvers only
guarantee locally optimal solutions, we show that our formulation produces
higher quality controllers than the state-of-the-art approach. We also
incorporate a shared source of randomness in the form of a correlation device
to further increase solution quality with only a limited increase in space and
time. Our experimental results show that nonlinear optimization can be used to
provide high quality, concise solutions to decentralized decision problems
under uncertainty.Comment: Appears in Proceedings of the Twenty-Third Conference on Uncertainty
in Artificial Intelligence (UAI2007
Approximate Decentralized Bayesian Inference
This paper presents an approximate method for performing Bayesian inference
in models with conditional independence over a decentralized network of
learning agents. The method first employs variational inference on each
individual learning agent to generate a local approximate posterior, the agents
transmit their local posteriors to other agents in the network, and finally
each agent combines its set of received local posteriors. The key insight in
this work is that, for many Bayesian models, approximate inference schemes
destroy symmetry and dependencies in the model that are crucial to the correct
application of Bayes' rule when combining the local posteriors. The proposed
method addresses this issue by including an additional optimization step in the
combination procedure that accounts for these broken dependencies. Experiments
on synthetic and real data demonstrate that the decentralized method provides
advantages in computational performance and predictive test likelihood over
previous batch and distributed methods.Comment: This paper was presented at UAI 2014. Please use the following BibTeX
citation: @inproceedings{Campbell14_UAI, Author = {Trevor Campbell and
Jonathan P. How}, Title = {Approximate Decentralized Bayesian Inference},
Booktitle = {Uncertainty in Artificial Intelligence (UAI)}, Year = {2014}
Federated Neural Architecture Search
To preserve user privacy while enabling mobile intelligence, techniques have
been proposed to train deep neural networks on decentralized data. However,
training over decentralized data makes the design of neural architecture quite
difficult as it already was. Such difficulty is further amplified when
designing and deploying different neural architectures for heterogeneous mobile
platforms. In this work, we propose an automatic neural architecture search
into the decentralized training, as a new DNN training paradigm called
Federated Neural Architecture Search, namely federated NAS. To deal with the
primary challenge of limited on-client computational and communication
resources, we present FedNAS, a highly optimized framework for efficient
federated NAS. FedNAS fully exploits the key opportunity of insufficient model
candidate re-training during the architecture search process, and incorporates
three key optimizations: parallel candidates training on partial clients, early
dropping candidates with inferior performance, and dynamic round numbers.
Tested on large-scale datasets and typical CNN architectures, FedNAS achieves
comparable model accuracy as state-of-the-art NAS algorithm that trains models
with centralized data, and also reduces the client cost by up to two orders of
magnitude compared to a straightforward design of federated NAS
MAA*: A Heuristic Search Algorithm for Solving Decentralized POMDPs
We present multi-agent A* (MAA*), the first complete and optimal heuristic
search algorithm for solving decentralized partially-observable Markov decision
problems (DEC-POMDPs) with finite horizon. The algorithm is suitable for
computing optimal plans for a cooperative group of agents that operate in a
stochastic environment such as multirobot coordination, network traffic
control, `or distributed resource allocation. Solving such problems efiectively
is a major challenge in the area of planning under uncertainty. Our solution is
based on a synthesis of classical heuristic search and decentralized control
theory. Experimental results show that MAA* has significant advantages. We
introduce an anytime variant of MAA* and conclude with a discussion of
promising extensions such as an approach to solving infinite horizon problems.Comment: Appears in Proceedings of the Twenty-First Conference on Uncertainty
in Artificial Intelligence (UAI2005
A Model of Total Factor Productivity Built on Hayek’s View of Knowledge: What Really Went Wrong with Socialist Planned Economies?
Because Hayek’s view goes beyond the Walrasian framework, his descriptive arguments on socialist planned economies are prone to be misunderstood. This paper clarifies Hayek’s arguments by using them as a basis to construct a model of total factor productivity. The model shows that productivity depends substantially on the intelligence of ordinary workers. The model indicates that the essential reason for the reduced productivity of a socialist economy is that, even though human beings are imperfect and do not know everything about the universe, they are able to utilize their intelligence to innovate. Decentralized market economies are far more productive than socialist economies because they intrinsically can fully utilize human beings’ intelligence, but socialist planned economies cannot, in large part because of the imagined perfect central planning bureau that does not exist.Hayek; Market economy; Socialist planned economy; Total factor productivity; Innovation; Experience curve effect; China
Facing Catastrophe - Risk and Response: The 9-11 and 11-M Commissions' Blind Sides
Background thinking for the upcoming Madrid terrorism summit stems partly from the 9/11 Commission and Spain's Comisión 11-M. Their presentations fall short on pinpointing the sources of attacks that carry the most risk and how best to respond. Terrorist attacks over the last decades follow a power-law distribution, which anticipates future terrorist events with ever broader effects. Intelligence estimates based on models keyed to frequency and recency of past occurrences make us less secure even if they predict most terrorist events. Evolution, complex adaptive systems, and WWII experience from British intelligence provide salutary lessons for thinking “outside the box” with decentralized expertise. History shows that people do not readily panic in surprise attacks and that local actors may be best able to organize response efforts. Proposals to centralize intelligence and unify command and control are not promising given recent transformations in terrorist networks in the wake of Al-Qaeda's operational demise.
- …
