264 research outputs found

    Robust Cooperative Manipulation without Force/Torque Measurements: Control Design and Experiments

    Full text link
    This paper presents two novel control methodologies for the cooperative manipulation of an object by N robotic agents. Firstly, we design an adaptive control protocol which employs quaternion feedback for the object orientation to avoid potential representation singularities. Secondly, we propose a control protocol that guarantees predefined transient and steady-state performance for the object trajectory. Both methodologies are decentralized, since the agents calculate their own signals without communicating with each other, as well as robust to external disturbances and model uncertainties. Moreover, we consider that the grasping points are rigid, and avoid the need for force/torque measurements. Load distribution is also included via a grasp matrix pseudo-inverse to account for potential differences in the agents' power capabilities. Finally, simulation and experimental results with two robotic arms verify the theoretical findings

    Disturbance observer-based neural network control of cooperative multiple manipulators with input saturation

    Get PDF
    In this paper, the complex problems of internal forces and position control are studied simultaneously and a disturbance observer-based radial basis function neural network (RBFNN) control scheme is proposed to: 1) estimate the unknown parameters accurately; 2) approximate the disturbance experienced by the system due to input saturation; and 3) simultaneously improve the robustness of the system. More specifically, the proposed scheme utilizes disturbance observers, neural network (NN) collaborative control with an adaptive law, and full state feedback. Utilizing Lyapunov stability principles, it is shown that semiglobally uniformly bounded stability is guaranteed for all controlled signals of the closed-loop system. The effectiveness of the proposed controller as predicted by the theoretical analysis is verified by comparative experimental studies

    Design and modeling of a stair climber smart mobile robot (MSRox)

    Full text link

    Energy-oriented Modeling And Control of Robotic Systems

    Get PDF
    This research focuses on the energy-oriented control of robotic systems using an ultracapacitor as the energy source. The primary objective is to simultaneously achieve the motion task objective and to increase energy efficiency through energy regeneration. To achieve this objective, three aims have been introduced and studied: brushless DC motors (BLDC) control by achieving optimum current in the motor, such that the motion task is achieved, and the energy consumption is minimized. A proof-ofconcept study to design a BLDC motor driver which has superiority compare to an off-the-shelf driver in terms of energy regeneration, and finally, the third aim is to develop a framework to study energy-oriented control in cooperative robots. The first aim is achieved by introducing an analytical solution which finds the optimal currents based on the desired torque generated by a virtual. Furthermore, it is shown that the well-known choice of a zero direct current component in the direct-quadrature frame is sub-optimal relative to our energy optimization objective. The second aim is achieved by introducing a novel BLDC motor driver, composed of three independent regenerative drives. To run the motor, the control law is obtained by specifying an outer-loop torque controller followed by minimization of power consumption via online constrained quadratic optimization. An experiment is conducted to assess the performance of the proposed concept against an off-the-shelf driver. It is shown that, in terms of energy regeneration and consumption, the developed driver has better performance, and a reduction of 15% energy consumption is achieved. v For the third aim, an impedance-based control scheme is introduced for cooperative manipulators grasping a rigid object. The position and orientation of the payload are to be maintained close to a desired trajectory, trading off tracking accuracy by low energy consumption and maintaining stability. To this end, an optimization problem is formulated using energy balance equations. The optimization finds the damping and stiffness gains of the impedance relation such that the energy consumption is minimized. Furthermore, L2 stability techniques are used to allow for time-varying damping and stiffness in the desired impedance. A numerical example is provided to demonstrate the results

    Adaptive fuzzy control for coordinated multiple robots with constraint using impedance learning

    Get PDF
    In this paper, we investigate fuzzy neural network (FNN) control using impedance learning for coordinated multiple constrained robots carrying a common object in the presence of the unknown robotic dynamics and the unknown environment with which the robot comes into contact. First, an FNN learning algorithm is developed to identify the unknown plant model. Second, impedance learning is introduced to regulate the control input in order to improve the environment-robot interaction, and the robot can track the desired trajectory generated by impedance learning. Third, in light of the condition requiring the robot to move in a finite space or to move at a limited velocity in a finite space, the algorithm based on the position constraint and the velocity constraint are proposed, respectively. To guarantee the position constraint and the velocity constraint, an integral barrier Lyapunov function is introduced to avoid the violation of the constraint. According to Lyapunov's stability theory, it can be proved that the tracking errors are uniformly bounded ultimately. At last, some simulation examples are carried out to verify the effectiveness of the designed control

    Biomimetic Manipulator Control Design for Bimanual Tasks in the Natural Environment

    Get PDF
    As robots become more prolific in the human environment, it is important that safe operational procedures are introduced at the same time; typical robot control methods are often very stiff to maintain good positional tracking, but this makes contact (purposeful or accidental) with the robot dangerous. In addition, if robots are to work cooperatively with humans, natural interaction between agents will make tasks easier to perform with less effort and learning time. Stability of the robot is particularly important in this situation, especially as outside forces are likely to affect the manipulator when in a close working environment; for example, a user leaning on the arm, or task-related disturbance at the end-effector. Recent research has discovered the mechanisms of how humans adapt the applied force and impedance during tasks. Studies have been performed to apply this adaptation to robots, with promising results showing an improvement in tracking and effort reduction over other adaptive methods. The basic algorithm is straightforward to implement, and allows the robot to be compliant most of the time and only stiff when required by the task. This allows the robot to work in an environment close to humans, but also suggests that it could create a natural work interaction with a human. In addition, no force sensor is needed, which means the algorithm can be implemented on almost any robot. This work develops a stable control method for bimanual robot tasks, which could also be applied to robot-human interactive tasks. A dynamic model of the Baxter robot is created and verified, which is then used for controller simulations. The biomimetic control algorithm forms the basis of the controller, which is developed into a hybrid control system to improve both task-space and joint-space control when the manipulator is disturbed in the natural environment. Fuzzy systems are implemented to remove the need for repetitive and time consuming parameter tuning, and also allows the controller to actively improve performance during the task. Experimental simulations are performed, and demonstrate how the hybrid task/joint-space controller performs better than either of the component parts under the same conditions. The fuzzy tuning method is then applied to the hybrid controller, which is shown to slightly improve performance as well as automating the gain tuning process. In summary, a novel biomimetic hybrid controller is presented, with a fuzzy mechanism to avoid the gain tuning process, finalised with a demonstration of task-suitability in a bimanual-type situation.EPSR

    Performance comparison of structured H∞ based looptune and LQR for a 4-DOF robotic manipulator

    Get PDF
    We explore looptune, a MATLAB-based structured H1 synthesis technique in the context of robotics. Position control of a 4 Degree of Freedom (DOF) serial robotic manipulator developed using Simulink is the problem under consideration. Three full state feedback control systems were developed, analyzed and compared for both steady-state and transient performance using the Linear Quadratic Regulator (LQR) and looptune. Initially, a single gain feedback controller was synthesized using LQR. This system was then modified by augmenting the state feedback controller with Proportional Integral (PI) and Integral regulators, thereby creating a second and third control system respectively. In both the second and third control systems, the LQR synthesized gain and additional gains were further tuned using looptune to achieve improvement in performance. The second and third systems were also compared in terms of tracking a time-dependent trajectory. Finally, the LQR and looptune synthesized controllers were tested for robustness by simultaneously increasing the mass of each manipulator link. In comparison to LQR, the second system consisting of Single Input Single Output (SISO) PI controllers and the state feedback matrix succeeded in meeting the control objectives in terms of performance, optimality, trajectory tracking, and robustness. The third system did not improve performance in contrast to LQR, but still showed robustness under mass variation. In conclusion, our results have shown looptune to have a comparatively better performance over LQR thereby highlighting its promising potential for future emerging control system applications

    Distributed observer-based prescribed performance control for multi-robot deformable object cooperative teleoperation

    Get PDF
    In this paper, a distributed observer-based prescribed performance control method is proposed for using a multi-robot teleoperation system to manipulate a common deformable object. To achieve a stable position-tracking effect and realize the desired cooperative operational performance, we first define a new hybrid error matrix for both the relative distances and absolute positions of robots and then decompose the matrix into two new error terms for cooperative and independent robot control. Then, we improve the Kelvin-Voigt (K-V) contact model based on the new error terms. Because the center position and deformation of the object cannot be measured, the object dynamics are then expressed by the relative distances of robots and an equivalent impedance term. Each robot incorporates an observer to estimate contact force and object dynamics based on its own measurements. To address the position errors caused by biases in force estimation and realize the position-tracking effect of each robot, we improve the barrier Lyapunov functions (BLFs) by incorporating the errors into system control. which allows us to achieve a predefined position-tracking effect. We conduct an experiment to verify the proposed controller’s ability in a dual-telerobot cooperative manipulation task, even when the object is subjected to unknown disturbances. Note to Practitioners —This article is inspired by the limitations of multi-telerobot manipulation with a deformable object, where the deformation of the object cannot be measured directly. Meanwhile, force sensors, especially 6-axis force sensors, are very expensive. To realize the purpose that objects manipulated by multiple robots match the same state as operated on the leader side, we propose an object-centric teleoperation framework based on the estimates of contact forces and object dynamics and the improved barrier Lyapunov functions (BLFs). This framework contributes to two aspects in practice: 1) propose a control diagram for deformable object co-teleoperation of multi-robots for unmeasurable object’s centre position and deformation; 2) propose an improved BLFs controller based on the estimation of contact force and robot dynamics. The estimation errors are considered and transferred using an equivalent impedance to be integrated into the Lyapunov function to minimize both force and motion-tracking errors. The experimental results verify the effectiveness of the proposed method. The developed framework can be used in industrial applications with a similar scenario

    AI based Robot Safe Learning and Control

    Get PDF
    Introduction This open access book mainly focuses on the safe control of robot manipulators. The control schemes are mainly developed based on dynamic neural network, which is an important theoretical branch of deep reinforcement learning. In order to enhance the safety performance of robot systems, the control strategies include adaptive tracking control for robots with model uncertainties, compliance control in uncertain environments, obstacle avoidance in dynamic workspace. The idea for this book on solving safe control of robot arms was conceived during the industrial applications and the research discussion in the laboratory. Most of the materials in this book are derived from the authors’ papers published in journals, such as IEEE Transactions on Industrial Electronics, neurocomputing, etc. This book can be used as a reference book for researcher and designer of the robotic systems and AI based controllers, and can also be used as a reference book for senior undergraduate and graduate students in colleges and universities
    • …
    corecore