86 research outputs found

    逐次干渉除去を用いた多元接続システムのパワー割り当てに関する研究

    Get PDF
    In future wireless communication networks, the number of devices is likely to increase dramatically due to potential development of new applications such as the Internet of Things (IoT). Consequently, radio access network is required to support multiple access of massive users and achieve high spectral efficiency. From the information theoretic perspective, orthogonal multiple access protocols are suboptimal. To achieve the multiple access capacity, non-orthogonal multiple access protocols and multiuser detection (MUD) are required. For the non-orthogonal code-division multiple access (CDMA), several MUD techniques have been proposed to improve the spectrum efficiency. Successive interference cancellation (SIC) is a promising MUD techniques due to its low complexity and good decoding performance. Random access protocols are designed for the system with bursty traffic to reduce the delay, compared to the channelized multiple access. Since the users contend for the channel instead of being assigned by the base station (BS), collisions happen with a certain probability. If the traffic load becomes relatively high, the throughput of these schemes steeply falls down because of collisions. However, it has been well-recognized that more complex procedures can permit decoding of interfering signals, which is referred to as multi-packet reception (MPR). Also, an SIC decoder might decode more packets by successively subtracting the correctly decoded packets from the collision. Cognitive radio (CR) is an emerging technology to solve the problem of spectrum scarcity by dynamically sharing the spectrum. In the CR networks, the secondary users (SUs) are allowed to dynamically share the frequency bands with primary users (PUs) under primary quality-of-service (QoS) protection such as the constraint of interference temperature at the primary base station (PBS). For the uplink multiple access to the secondary base station (SBS), transmit power allocation for the SUs is critical to control the interference temperature at the PBS. Transmit power allocation has been extensively studied in various multiple access scenarios. The power allocation algorithms can be classified into two types, depending on whether the process is controlled by the base station (BS). For the centralized power allocation (CPA) algorithms, the BS allocates the transmit powers to the users through the downlink channels. For the random access protocols, there are also efforts on decentralized power allocation (DPA) that the users select transmit powers according to given distributions of power and probability, instead of being assigned the transmit power at each time slot by the BS. In this dissertation, the DPA algorithms for the random access protocols with SIC are investigated and new methods are proposed. First a decentralized multilevel power allocation algorithm to improve the MAC throughput performance is proposed, for the general SIC receiver that can decode multiple packets from one collision. Then an improved DPA algorithm to maximize the overall system sum rate is proposed, taking into account of both the MAC layer and PHY layer. Finally, a DPA algorithm for the CR secondary random access is proposed, considering the constraint of interference temperature and the practical assumption of imperfect cancellation. An opportunistic transmission protocol for the fading environment to further reduce the interference temperature is also proposed. For the future work, the optimal DPA for the random access with the SIC receiver is still an open problem. Besides, advanced multiple access schemes that aim to approach the multiple access capacity by combining the advantages of the network coded cooperation, the repetition slotted ALOHA, and the SIC receiver are also interesting.電気通信大学201

    Evaluation of Interference-Cancellation Based MAC Protocols for Vehicular Communications

    Get PDF
    Vehicular communications form an important part of future intelligent transport systems. Wireless connectivity between vehicles can enhance safety in vehicular networks and enable new services such as adaptive traffic control, collision detection and avoidance. As several new algorithms are being developed for enhancing vehicle to vehicle wireless connectivity, it is important to validate the performance of these algorithms using reasonably accurate wireless channel models. Specifically, some recent developments in the medium access control (MAC) layer algorithms appear to have the potential to improve the performance of vehicle to vehicle communications; however, these algorithms have not been validated with realistic channel models encountered in vehicular communications. The aforementioned issues are addressed in this thesis and correspondingly, there are two main contributions - (i) A complete IEEE 802.11p based transceiver model has been simulated in MATLAB and its performance & reliability are tested using existing empirically-developed wireless channel models. (ii) A new MAC layer algorithm based on slotted ALOHA with successive interference cancellation(SIC) has been evaluated and tested by taking into consideration the performance of underlying physical layer. The performance of slotted ALOHA-SIC and the already existing carrier sense multiple access with collision avoidance (CSMA/CA) scheme with respect to channel access delay and average packet loss ratio is also studied

    Optimal power control law for equal-rate DS-CDMA networks governed by a successive soft interference cancellation scheme

    Get PDF
    ©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper studies the throughput maximization of a dense multiple access network of low-rate subscribers that share the same practical Forward Error Correction (FEC) code and modulation scheme, and transmit to a central node that implements a Successive Soft Interference Cancellation (soft SIC) strategy in order to mitigate Multiple Access Interference (MAI). In the user-asymptotic case, we make use of Variational Calculus (VC) tools to derive, in terms of the Packet Error Rate (PER) of the shared encoder and the Residual Energy (RE) from imperfect cancellation, the optimum energy profile that maximizes the network spectral efficiency, when a sum power constraint at the SIC input is enforced. Comparative performance analyses using a representative encoder are carried out. Simulation results show the benefit of the adopted soft SIC scheme in front of other SIC strategies, obtaining relevant throughput gains under high traffic loads.Peer ReviewedPostprint (author's final draft

    Packet data communications over coded CDMA with hybrid type-II ARQ

    Get PDF
    This dissertation presents in-depth investigation of turbo-coded CDNIA systems in packet data communication terminology. It is divided into three parts; (1) CDMA with hybrid FEC/ARQ in deterministic environment, (2) CDMA with hybrid FEC/ARQ in random access environment and (3) an implementation issue on turbo decoding. As a preliminary, the performance of CDMA with hybrid FEC/ARQ is investigated in deterministic environment. It highlights the practically achievable spectral efficiency of CDMA system with turbo codes and the effect of code rates on the performance of systems with MF and LMMSE receivers, respectively. For given ensemble distance spectra of punctured turbo codes, an improved union bound is used to evaluate the error probability of ML turbo decoder with MF receiver and with LMMSE receiver front-end and, then, the corresponding spectral efficiency is computed as a function of system load. In the second part, a generalized analytical framework is first provided to analyze hybrid type-11 ARQ in random access environment. When applying hybrid type-11 ARQ, probability of packet success and packet length is generally different from attempt to attempt. Since the conventional analytical model, customarily employed for ALOHA system with pure or hybrid type-I ARQ, cannot be applied for this case, an expanded analytical model is introduced. It can be regarded as a network of queues and Jackson and Burke\u27s theorems can be applied to simplify the analysis. The second part is further divided into two sub topics, i.e. CDMA slotted ALOHA with hybrid type-11 ARQ using packet combining and CDMA unslotted ALOHA with hybrid type-11 ARQ using code combining. For code combining, the rate compatible punctured turbo (RCPT) codes are examined. In the third part, noticing that the decoding delay is crucial to the fast ARQ, a parallel MAP algorithm is proposed to reduce the computational decoding delay of turbo codes. It utilizes the forward and backward variables computed in the previous iteration to provide boundary distributions for each sub-block MAP decoder. It has at least two advantages over the existing parallel scheme; No performance degradation and No additional computation

    Time diversity solutions to cope with lost packets

    Get PDF
    A dissertation submitted to Departamento de Engenharia Electrotécnica of Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engenharia Electrotécnica e de ComputadoresModern broadband wireless systems require high throughputs and can also have very high Quality-of-Service (QoS) requirements, namely small error rates and short delays. A high spectral efficiency is needed to meet these requirements. Lost packets, either due to errors or collisions, are usually discarded and need to be retransmitted, leading to performance degradation. An alternative to simple retransmission that can improve both power and spectral efficiency is to combine the signals associated to different transmission attempts. This thesis analyses two time diversity approaches to cope with lost packets that are relatively similar at physical layer but handle different packet loss causes. The first is a lowcomplexity Diversity-Combining (DC) Automatic Repeat reQuest (ARQ) scheme employed in a Time Division Multiple Access (TDMA) architecture, adapted for channels dedicated to a single user. The second is a Network-assisted Diversity Multiple Access (NDMA) scheme, which is a multi-packet detection approach able to separate multiple mobile terminals transmitting simultaneously in one slot using temporal diversity. This thesis combines these techniques with Single Carrier with Frequency Division Equalizer (SC-FDE) systems, which are widely recognized as the best candidates for the uplink of future broadband wireless systems. It proposes a new NDMA scheme capable of handling more Mobile Terminals (MTs) than the user separation capacity of the receiver. This thesis also proposes a set of analytical tools that can be used to analyse and optimize the use of these two systems. These tools are then employed to compare both approaches in terms of error rate, throughput and delay performances, and taking the implementation complexity into consideration. Finally, it is shown that both approaches represent viable solutions for future broadband wireless communications complementing each other.Fundação para a Ciência e Tecnologia - PhD grant(SFRH/BD/41515/2007); CTS multi-annual funding project PEst-OE/EEI/UI0066/2011, IT pluri-annual funding project PEst-OE/EEI/LA0008/2011, U-BOAT project PTDC/EEATEL/ 67066/2006, MPSat project PTDC/EEA-TEL/099074/2008 and OPPORTUNISTICCR project PTDC/EEA-TEL/115981/200

    Asymptotically Optimal Multiple-access Communication via Distributed Rate Splitting

    Full text link
    We consider the multiple-access communication problem in a distributed setting for both the additive white Gaussian noise channel and the discrete memoryless channel. We propose a scheme called Distributed Rate Splitting to achieve the optimal rates allowed by information theory in a distributed manner. In this scheme, each real user creates a number of virtual users via a power/rate splitting mechanism in the M-user Gaussian channel or via a random switching mechanism in the M-user discrete memoryless channel. At the receiver, all virtual users are successively decoded. Compared with other multiple-access techniques, Distributed Rate Splitting can be implemented with lower complexity and less coordination. Furthermore, in a symmetric setting, we show that the rate tuple achieved by this scheme converges to the maximum equal rate point allowed by the information-theoretic bound as the number of virtual users per real user tends to infinity. When the capacity regions are asymmetric, we show that a point on the dominant face can be achieved asymptotically. Finally, when there is an unequal number of virtual users per real user, we show that differential user rate requirements can be accommodated in a distributed fashion.Comment: Submitted to the IEEE Transactions on Information Theory. 15 Page

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research

    Allocation designs for massive multiple access with interference cancellation

    Get PDF
    In the transition towards the next generation of wireless technology systems, the increasing number of devices curbs the potential of current wireless networks to cope with such increases in network density. Wireless communications via satellite constitute a cost effective option to achieve high transmission reliability in remote areas or to create resilient networks to be used in emergency situations. To counterbalance the growing network density, one of the main goals in the uplink is to increase the spectral efficiency of the network. By working on the application of non-orthogonal multiple access and the exploitation of the collision domain through interference cancellation, this dissertation tackles the problem of massive multiple access. A consensual scheme that meets the main goal and the aim of reducing the interaction between devices and the satellite in the control plane is Enhanced Spread Spectrum ALOHA, which combines spreading-based short-packet transmissions with successive interference cancellation (SIC) on the receiver's side. This combination opens up several design avenues in terms of energy and code allocation to users when a certain amount of channel state information is available to them. Motivated by this scheme, this thesis studies the best allocation strategies when the SIC receiver operates nonideally: firstly, it investigates a system model for a receiver that, inspired by the demodulator adopted in the Enhanced Spread Spectrum ALOHA system, deals with the problems of user ordering and iterative decoding with short packets; and secondly, it delves into the user-asymptotic regime and the application of the calculus of variations to derive the stationary point equations corresponding to the optimal allocation rules.The first part of this thesis investigates the impact of nonideal decoding and imperfect cancellation on the first iteration of a SIC receiver aided by redundancy-check error control. The system model characterises both non-idealities using known functions of the signal-to-interference-plus-noise ratio. The propagation of packet decoding success/failure events throughout the stages of the receiver is circumvented in the user-asymptotic regime, since the model takes a deterministic form. The asymptotically optimal energy and rate allocation is studied for a wide variety of cases. The second part of this thesis investigates an iterative SIC receiver and extends the allocation designs derived previously to iterations beyond the first. The derivation of a system model is challenging, since each iteration of the receiver operates with memory with respect to the previous ones, and due to the fact that the decoding operations for the same user in different iterations are statistically dependent. This thesis motivates and states a system model that solves said difficulties by adding minimal complexity to the one adopted previously. The user-asymptotic regime is investigated to reveal mathematical forms to the above model that allow for a thorough understanding of the adopted receiver. Finally, the chapter exploits the user-asymptotic model and conducts research to designing smooth allocation functions. The third part of this thesis studies the user-ordering problem for a SIC receiver to which the strengths received from all users are unknown. The thesis derives an accurate system model for a large-user SIC receiver, which proceeds to order users after estimating their symbol energies at the initial stage through preamble cross-correlations. Analytical findings are determined in the user-asymptotic regime. The asymptotically optimal energy allocation is shown to obey, in contrast to the practically exponential user-energy distributions obtained before, a piecewise constant function; fact that entails great computational advantages of its application.En la transició cap a la pròxima generació de sistemes tecnològics sense fils, el creixent nombre de dispositius frena el potencial de les xarxes sense fils actuals per fer front a tal augment en la densitat de xarxa. Les comunicacions sense fils via satèl·lit constitueixen una opció rentable per assolir una fiabilitat de transmissió alta en zones remotes o per crear xarxes que puguin ser utilitzades en situacions d'emergència. Per contrarestar la creixent densitat de xarxa, un dels objectius principals en l'enllaç ascendent és augmentar l'eficiència espectral d'aquesta. Aquesta tesi aborda el problema d'accés múltiple massiu combinant l'aplicació de tècniques d'accés múltiple no ortogonal amb esquemes de cancel·lació d’interferència. Un esquema consensuat que acompleix amb l’objectiu principal i amb la fita de reduir la interacció entre dispositius i satèl·lit en el pla de control és Enhanced Spread Spectrum ALOHA, que combina transmissions de paquets curts basades en l'eixamplament del senyal amb la cancel·lació successiva d'interferències (SIC) en recepció. Aquesta combinació obre diverses vies per l'assignació d'energia i codi als diferents usuaris quan aquests disposen d’informació sobre l'estat del canal. Motivat per l'esquema anterior, aquesta tesi estudia les millors estratègies d'assignació quan s'adopta un receptor SIC no ideal: en primer lloc, investiga un model de sistema per un receptor SIC que, inspirat en el desmodulador adoptat en el sistema Enhanced Spread Spectrum ALOHA, aborda els problemes d'ordenació d'usuaris i de descodificació iterativa amb paquets curts; i, en segon lloc, s’endinsa en el règim asimptòtic d'usuaris i en l'aplicació del càlcul de variacions per derivar les equacions de punt estacionari corresponents a les funcions d'assignació òptimes. La primera part d'aquesta tesi investiga l'impacte de la descodificació no ideal i de la cancel·lació imperfecta en la primera iteració d'un receptor SIC assistit per control d'errors. El model de sistema proposat caracteritza ambdues no idealitats fent ús de funcions conegudes de la relació senyal-a-soroll-més-interferència. La propagació dels esdeveniments d'èxit/fracàs en la descodificació de paquets al llarg de les etapes del receptor s'aborda en el règim asimptòtic d'usuaris, ja que el model pren forma determinista. Les funcions d'assignació s'estudien en el règim asimptòtic d'usuaris per varis casos. La segona part de la tesi investiga un receptor SIC iteratiu i estén les assignacions derivades en el capítol anterior per a iteracions del SIC més enllà de la primera. La derivació d'un model de sistema suposa un repte, ja que cada iteració del receptor opera amb memòria respecte a iteracions anteriors i degut a que les operacions de descodificació per a un mateix usuari en iteracions diferents són estadísticament dependents. Es proposa un model de sistema que resol tals dificultats afegint complexitat mínima al model adoptat anteriorment. S'investiga el règim asimptòtic d'usuaris amb l'objectiu d’evidenciar expressions matemàtiques del model que permetin la completa comprensió del receptor adoptat. Per últim, es dissenyen funcions d'assignació contínuament diferenciables fent ús del model asimptòtic anterior. La tercera i última part d'aquesta tesi estudia el problema d'ordenació d'usuaris aplicat a un receptor SIC que desconeix les potències rebudes de tots ells. Es deriva un model de sistema per un receptor que gestiona nombrosos usuaris i els ordena després d'estimar les energies de tots ells en l'etapa inicial mitjançant correlacions de preamble. Els resultats analítics s’obtenen en el règim asimptòtic d'usuaris. Es demostra que, contràriament a les distribucions pràcticament exponencials obtingudes anteriorment, l'assignació d'energia òptima derivada per a infinits usuaris presenta una estructura constant a trossos; fet que comporta grans avantatges computacionals en la seva aplicació.En la transición hacia la próxima generación de sistemas tecnológicos inalámbricos, el creciente número de dispositivos frena el potencial de las redes inalámbricas actuales para hacer frente a esos aumentos en la densidad de red. Impulsadas por las innovaciones en tecnología satelital, las comunicaciones inalámbricas vía satélite constituyen una opción rentable para lograr una alta fiabilidad de transmisión en zonas remotas o para crear redes reservadas para situaciones de emergencia. Para contrarrestar la creciente densidad de la red, uno de los objetivos principales en el enlace ascendente es aumentar la eficiencia espectral de la misma. En favor de este objetivo, se identifican tres técnicas no excluyentes: (i) la aplicación de técnicas de acceso múltiple no ortogonal, para hacer frente a la limitada disponibilidad de recursos ortogonales requeridos en el acceso múltiple convencional, (ii) la explotación del dominio de colisión por el receptor, mediante la cancelación de interferencias, y (iii) la utilización de satélites multihaz, que, usando la tecnología multiantena, permiten una reutilización más eficiente del dominio espacial. Esta tesis aborda el problema de acceso múltiple masivo trabajando en los dos primeros puntos. Un esquema consensuado que cumple con el objetivo principal y con el fin de reducir la interacción entre los dispositivos y el satélite en el plano de control es Enhanced Spread Spectrum ALOHA, que combina transmisiones de paquetes cortos basadas en el ensanchamiento de la señal con la cancelación sucesiva de interferencias (SIC) en recepción. Esta combinación abre diversas vías para la asignación de energía y código a los usuarios cuando estos disponen de cierta información sobre el estado del canal. Motivado por el esquema anterior, esta tesis reexamina resultados previos bajo análisis teóricos de capacidad y cancelación perfecta, y estudia las mejores estrategias de asignación cuando el receptor SIC opera de forma no ideal. Los análisis anteriores se amplían en dos frentes: en primer lugar, adoptando políticas de decodificación y cancelación adaptadas para paquetes cortos; y, en segundo lugar, explorando el desequilibrio de energía, tasa de transmisión y fiabilidad. Con respecto al primer punto, esta tesis investiga un modelo de sistema para un receptor SIC que, inspirado en el demodulador adoptado en el sistema Enhanced Spread Spectrum ALOHA, aborda los problemas de ordenación de usuarios y decodificación iterativa con paquetes cortos. En cuanto al segundo punto, esta tesis se adentra en el régimen asintótico de usuarios y en la aplicación del cálculo de variaciones para derivar las ecuaciones de punto estacionario correspondientes a las funciones de asignación óptimas. Una de las principales contribuciones de esta tesis es el descubrimiento de funciones discontinuas (continuamente diferenciables a trozos) como una clase de distribuciones de energía ordenada para maximizar la eficiencia espectral; un enfoque que ha demostrado ser abrumadoramente exitoso. En concreto, el modelo derivado en la presente tesis incorpora, progresivamente y a lo largo de tres capítulos independientes, aspectos prácticos del cancelador de interferencias adoptado: 1. La primera parte de esta tesis investiga el impacto de la decodificación no ideal y de la cancelación imperfecta en la primera iteración de un receptor SIC asistido por control de errores. El modelo de sistema caracteriza ambas no idealidades utilizando funciones conocidas de la relación señal-a-ruido-más-interferencia (SINR) bajo la suposición de interferencia gaussiana: las funciones tasa de error de paquete (PER) y energía residual. La propagación de los eventos de éxito/fracaso en la decodificación de paquetes a lo largo de las etapas del receptor SIC se sortea en el régimen asintótico de usuarios, puesto que el modelo de sistema adopta expresiones deterministas. La asignación de energía y código se estudia en el régimen asintótico de usuarios para una amplia variedad de casos, incluyendo conjuntos formados por un número finito o infinito de esquemas de modulación y corrección de errores para paquetes de longitud finita e infinita. 2. La segunda parte de esta tesis investiga un receptor SIC iterativo y extiende las asignaciones derivadas anteriormente para iteraciones del SIC más allá de la primera. La derivación de un modelo para tal sistema supone un reto, ya que cada iteración del receptor opera con memoria respecto a las anteriores y porque las operaciones de decodificación para un mismo usuario en distintas iteraciones son estadísticamente dependientes. Esta tesis propone justificadamente un modelo de sistema que resuelve dichas dificultades añadiendo complejidad mínima al adoptado con anterioridad. En concreto, el modelo usa funciones PER multivariable, cuyos argumentos corresponden a las SINRs que experimenta un usuario a lo largo de las iteraciones del receptor, y define biyecciones para relacionar los índices de los usuarios que permanecen decodificados sin éxito en cada iteración. Se investiga el régimen asintótico de usuarios para revelar expresiones matemáticas del modelo anterior que permitan un completo entendimiento del receptor adoptado. Por último, se investiga el diseño de funciones de asignación continuamente diferenciables con extremos libres haciendo uso del modelo asintótico anterior. 3. La tercera y última parte de esta tesis estudia el problema de ordenación de usuarios en un receptor SIC que desconoce las potencias recibidas de todos ellos. La tesis deriva un modelo de sistema para un receptor SIC que gestiona un gran número de usuarios y los ordena tras estimar sus energías en la etapa inicial mediante correlaciones de preámbulo. En el régimen asintótico de usuarios, se obtienen resultados analíticos en los que el rendimiento del sistema se rige por un kernel conocido. Se demuestra que, contrariamente a las distribuciones prácticamente exponenciales obtenidas anteriormente, la asignación óptima de energía derivada para un número infinito de usuarios obedece una función constante a trozos; hecho que conlleva grandes ventajas computacionales en su aplicación.Postprint (published version
    corecore