29 research outputs found

    Gradient Descent with Compressed Iterates

    Full text link
    We propose and analyze a new type of stochastic first order method: gradient descent with compressed iterates (GDCI). GDCI in each iteration first compresses the current iterate using a lossy randomized compression technique, and subsequently takes a gradient step. This method is a distillation of a key ingredient in the current practice of federated learning, where a model needs to be compressed by a mobile device before it is sent back to a server for aggregation. Our analysis provides a step towards closing the gap between the theory and practice of federated learning, and opens the possibility for many extensions.Comment: NeurIPS 2019 Workshop on Federated Learning for Data Privacy and Confidentiality. 10 pages, 1 algorithm, 1 theorem, 5 lemma

    A Closer Look at Codistillation for Distributed Training

    Full text link
    Codistillation has been proposed as a mechanism to share knowledge among concurrently trained models by encouraging them to represent the same function through an auxiliary loss. This contrasts with the more commonly used fully-synchronous data-parallel stochastic gradient descent methods, where different model replicas average their gradients (or parameters) at every iteration and thus maintain identical parameters. We investigate codistillation in a distributed training setup, complementing previous work which focused on extremely large batch sizes. Surprisingly, we find that even at moderate batch sizes, models trained with codistillation can perform as well as models trained with synchronous data-parallel methods, despite using a much weaker synchronization mechanism. These findings hold across a range of batch sizes and learning rate schedules, as well as different kinds of models and datasets. Obtaining this level of accuracy, however, requires properly accounting for the regularization effect of codistillation, which we highlight through several empirical observations. Overall, this work contributes to a better understanding of codistillation and how to best take advantage of it in a distributed computing environment.Comment: Under revie

    APMSqueeze: A Communication Efficient Adam-Preconditioned Momentum SGD Algorithm

    Full text link
    Adam is the important optimization algorithm to guarantee efficiency and accuracy for training many important tasks such as BERT and ImageNet. However, Adam is generally not compatible with information (gradient) compression technology. Therefore, the communication usually becomes the bottleneck for parallelizing Adam. In this paper, we propose a communication efficient {\bf A}DAM {\bf p}reconditioned {\bf M}omentum SGD algorithm-- named APMSqueeze-- through an error compensated method compressing gradients. The proposed algorithm achieves a similar convergence efficiency to Adam in term of epochs, but significantly reduces the running time per epoch. In terms of end-to-end performance (including the full-precision pre-condition step), APMSqueeze is able to provide {sometimes by up to 210×2-10\times speed-up depending on network bandwidth.} We also conduct theoretical analysis on the convergence and efficiency

    Compressed Gradient Tracking Methods for Decentralized Optimization with Linear Convergence

    Full text link
    Communication compression techniques are of growing interests for solving the decentralized optimization problem under limited communication, where the global objective is to minimize the average of local cost functions over a multi-agent network using only local computation and peer-to-peer communication. In this paper, we first propose a novel compressed gradient tracking algorithm (C-GT) that combines gradient tracking technique with communication compression. In particular, C-GT is compatible with a general class of compression operators that unifies both unbiased and biased compressors. We show that C-GT inherits the advantages of gradient tracking-based algorithms and achieves linear convergence rate for strongly convex and smooth objective functions. In the second part of this paper, we propose an error feedback based compressed gradient tracking algorithm (EF-C-GT) to further improve the algorithm efficiency for biased compression operators. Numerical examples complement the theoretical findings and demonstrate the efficiency and flexibility of the proposed algorithms

    Periodic Stochastic Gradient Descent with Momentum for Decentralized Training

    Full text link
    Decentralized training has been actively studied in recent years. Although a wide variety of methods have been proposed, yet the decentralized momentum SGD method is still underexplored. In this paper, we propose a novel periodic decentralized momentum SGD method, which employs the momentum schema and periodic communication for decentralized training. With these two strategies, as well as the topology of the decentralized training system, the theoretical convergence analysis of our proposed method is difficult. We address this challenging problem and provide the condition under which our proposed method can achieve the linear speedup regarding the number of workers. Furthermore, we also introduce a communication-efficient variant to reduce the communication cost in each communication round. The condition for achieving the linear speedup is also provided for this variant. To the best of our knowledge, these two methods are all the first ones achieving these theoretical results in their corresponding domain. We conduct extensive experiments to verify the performance of our proposed two methods, and both of them have shown superior performance over existing methods

    Communication-Efficient Decentralized Optimization Over Time-Varying Directed Graphs

    Full text link
    We study decentralized optimization tasks carried out by a collection of agents, each having access only to a local cost function; the agents, who can communicate over a time-varying directed network, aim to minimize the sum of those functions. In practical settings, communication constraints impose a limit on the amount of information that can be exchanged between the agents. We propose communication-efficient algorithms for decentralized convex optimization and its special case, distributed average consensus, that rely on sparsification of local updates exchanged between neighboring agents in the network. Message sparsification alters column-stochasticity of the mixing matrices of directed networks, a property that plays an important role in establishing convergence of decentralized learning tasks. We show that by locally modifying mixing matrices the proposed framework achieves \O(\frac{\mathrm{ln}T}{\sqrt{T}}) convergence rate in general decentralized optimization settings, and a geometric convergence rate in the average consensus problem. Experimental results on synthetic and real datasets show efficacy of the proposed algorithms

    Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

    Full text link
    In this paper, we study distributed algorithms for large-scale AUC maximization with a deep neural network as a predictive model. Although distributed learning techniques have been investigated extensively in deep learning, they are not directly applicable to stochastic AUC maximization with deep neural networks due to its striking differences from standard loss minimization problems (e.g., cross-entropy). Towards addressing this challenge, we propose and analyze a communication-efficient distributed optimization algorithm based on a {\it non-convex concave} reformulation of the AUC maximization, in which the communication of both the primal variable and the dual variable between each worker and the parameter server only occurs after multiple steps of gradient-based updates in each worker. Compared with the naive parallel version of an existing algorithm that computes stochastic gradients at individual machines and averages them for updating the model parameters, our algorithm requires a much less number of communication rounds and still achieves a linear speedup in theory. To the best of our knowledge, this is the \textbf{first} work that solves the {\it non-convex concave min-max} problem for AUC maximization with deep neural networks in a communication-efficient distributed manner while still maintaining the linear speedup property in theory. Our experiments on several benchmark datasets show the effectiveness of our algorithm and also confirm our theory

    PowerGossip: Practical Low-Rank Communication Compression in Decentralized Deep Learning

    Full text link
    Lossy gradient compression has become a practical tool to overcome the communication bottleneck in centrally coordinated distributed training of machine learning models. However, algorithms for decentralized training with compressed communication over arbitrary connected networks have been more complicated, requiring additional memory and hyperparameters. We introduce a simple algorithm that directly compresses the model differences between neighboring workers using low-rank linear compressors applied on model differences. Inspired by the PowerSGD algorithm for centralized deep learning, this algorithm uses power iteration steps to maximize the information transferred per bit. We prove that our method requires no additional hyperparameters, converges faster than prior methods, and is asymptotically independent of both the network and the compression. Out of the box, these compressors perform on par with state-of-the-art tuned compression algorithms in a series of deep learning benchmarks

    Adaptive Serverless Learning

    Full text link
    With the emergence of distributed data, training machine learning models in the serverless manner has attracted increasing attention in recent years. Numerous training approaches have been proposed in this regime, such as decentralized SGD. However, all existing decentralized algorithms only focus on standard SGD. It might not be suitable for some applications, such as deep factorization machine in which the feature is highly sparse and categorical so that the adaptive training algorithm is needed. In this paper, we propose a novel adaptive decentralized training approach, which can compute the learning rate from data dynamically. To the best of our knowledge, this is the first adaptive decentralized training approach. Our theoretical results reveal that the proposed algorithm can achieve linear speedup with respect to the number of workers. Moreover, to reduce the communication-efficient overhead, we further propose a communication-efficient adaptive decentralized training approach, which can also achieve linear speedup with respect to the number of workers. At last, extensive experiments on different tasks have confirmed the effectiveness of our proposed two approaches

    Linear Convergent Decentralized Optimization with Compression

    Full text link
    Communication compression has become a key strategy to speed up distributed optimization. However, existing decentralized algorithms with compression mainly focus on compressing DGD-type algorithms. They are unsatisfactory in terms of convergence rate, stability, and the capability to handle heterogeneous data. Motivated by primal-dual algorithms, this paper proposes the first \underline{L}in\underline{EA}r convergent \underline{D}ecentralized algorithm with compression, LEAD. Our theory describes the coupled dynamics of the inexact primal and dual update as well as compression error, and we provide the first consensus error bound in such settings without assuming bounded gradients. Experiments on convex problems validate our theoretical analysis, and empirical study on deep neural nets shows that LEAD is applicable to non-convex problems.Comment: ICLR 2021 (International Conference on Learning Representations
    corecore