9,751 research outputs found

    Decentralized Collaborative Learning of Personalized Models over Networks

    Get PDF
    We consider a set of learning agents in a col-laborative peer-to-peer network, where each agent learns a personalized model according to its own learning objective. The question addressed in this paper is: how can agents improve upon their locally trained model by communicating with other agents that have similar objectives? We introduce and analyze two asynchronous gossip algorithms running in a fully decentralized manner. Our first approach , inspired from label propagation, aims to smooth pre-trained local models over the network while accounting for the confidence that each agent has in its initial model. In our second approach, agents jointly learn and propagate their model by making iterative updates based on both their local dataset and the behavior of their neighbors. Our algorithm to optimize this challenging objective in a decentralized way is based on ADMM

    Decentralized Collaborative Learning Framework for Next POI Recommendation

    Full text link
    Next Point-of-Interest (POI) recommendation has become an indispensable functionality in Location-based Social Networks (LBSNs) due to its effectiveness in helping people decide the next POI to visit. However, accurate recommendation requires a vast amount of historical check-in data, thus threatening user privacy as the location-sensitive data needs to be handled by cloud servers. Although there have been several on-device frameworks for privacy-preserving POI recommendations, they are still resource-intensive when it comes to storage and computation, and show limited robustness to the high sparsity of user-POI interactions. On this basis, we propose a novel decentralized collaborative learning framework for POI recommendation (DCLR), which allows users to train their personalized models locally in a collaborative manner. DCLR significantly reduces the local models' dependence on the cloud for training, and can be used to expand arbitrary centralized recommendation models. To counteract the sparsity of on-device user data when learning each local model, we design two self-supervision signals to pretrain the POI representations on the server with geographical and categorical correlations of POIs. To facilitate collaborative learning, we innovatively propose to incorporate knowledge from either geographically or semantically similar users into each local model with attentive aggregation and mutual information maximization. The collaborative learning process makes use of communications between devices while requiring only minor engagement from the central server for identifying user groups, and is compatible with common privacy preservation mechanisms like differential privacy. We evaluate DCLR with two real-world datasets, where the results show that DCLR outperforms state-of-the-art on-device frameworks and yields competitive results compared with centralized counterparts.Comment: 21 Pages, 3 figures, 4 table

    Fog-enabled Edge Learning for Cognitive Content-Centric Networking in 5G

    Full text link
    By caching content at network edges close to the users, the content-centric networking (CCN) has been considered to enforce efficient content retrieval and distribution in the fifth generation (5G) networks. Due to the volume, velocity, and variety of data generated by various 5G users, an urgent and strategic issue is how to elevate the cognitive ability of the CCN to realize context-awareness, timely response, and traffic offloading for 5G applications. In this article, we envision that the fundamental work of designing a cognitive CCN (C-CCN) for the upcoming 5G is exploiting the fog computing to associatively learn and control the states of edge devices (such as phones, vehicles, and base stations) and in-network resources (computing, networking, and caching). Moreover, we propose a fog-enabled edge learning (FEL) framework for C-CCN in 5G, which can aggregate the idle computing resources of the neighbouring edge devices into virtual fogs to afford the heavy delay-sensitive learning tasks. By leveraging artificial intelligence (AI) to jointly processing sensed environmental data, dealing with the massive content statistics, and enforcing the mobility control at network edges, the FEL makes it possible for mobile users to cognitively share their data over the C-CCN in 5G. To validate the feasibility of proposed framework, we design two FEL-advanced cognitive services for C-CCN in 5G: 1) personalized network acceleration, 2) enhanced mobility management. Simultaneously, we present the simulations to show the FEL's efficiency on serving for the mobile users' delay-sensitive content retrieval and distribution in 5G.Comment: Submitted to IEEE Communications Magzine, under review, Feb. 09, 201

    Model-Agnostic Decentralized Collaborative Learning for On-Device POI Recommendation

    Full text link
    As an indispensable personalized service in Location-based Social Networks (LBSNs), the next Point-of-Interest (POI) recommendation aims to help people discover attractive and interesting places. Currently, most POI recommenders are based on the conventional centralized paradigm that heavily relies on the cloud to train the recommendation models with large volumes of collected users' sensitive check-in data. Although a few recent works have explored on-device frameworks for resilient and privacy-preserving POI recommendations, they invariably hold the assumption of model homogeneity for parameters/gradients aggregation and collaboration. However, users' mobile devices in the real world have various hardware configurations (e.g., compute resources), leading to heterogeneous on-device models with different architectures and sizes. In light of this, We propose a novel on-device POI recommendation framework, namely Model-Agnostic Collaborative learning for on-device POI recommendation (MAC), allowing users to customize their own model structures (e.g., dimension \& number of hidden layers). To counteract the sparsity of on-device user data, we propose to pre-select neighbors for collaboration based on physical distances, category-level preferences, and social networks. To assimilate knowledge from the above-selected neighbors in an efficient and secure way, we adopt the knowledge distillation framework with mutual information maximization. Instead of sharing sensitive models/gradients, clients in MAC only share their soft decisions on a preloaded reference dataset. To filter out low-quality neighbors, we propose two sampling strategies, performance-triggered sampling and similarity-based sampling, to speed up the training process and obtain optimal recommenders. In addition, we design two novel approaches to generate more effective reference datasets while protecting users' privacy

    Heterogeneous Collaborative Learning for Personalized Healthcare Analytics via Messenger Distillation

    Full text link
    In this paper, we propose a Similarity-Quality-based Messenger Distillation (SQMD) framework for heterogeneous asynchronous on-device healthcare analytics. By introducing a preloaded reference dataset, SQMD enables all participant devices to distill knowledge from peers via messengers (i.e., the soft labels of the reference dataset generated by clients) without assuming the same model architecture. Furthermore, the messengers also carry important auxiliary information to calculate the similarity between clients and evaluate the quality of each client model, based on which the central server creates and maintains a dynamic collaboration graph (communication graph) to improve the personalization and reliability of SQMD under asynchronous conditions. Extensive experiments on three real-life datasets show that SQMD achieves superior performance
    • …
    corecore