325,547 research outputs found

    D2^2: Decentralized Training over Decentralized Data

    Full text link
    While training a machine learning model using multiple workers, each of which collects data from their own data sources, it would be most useful when the data collected from different workers can be {\em unique} and {\em different}. Ironically, recent analysis of decentralized parallel stochastic gradient descent (D-PSGD) relies on the assumption that the data hosted on different workers are {\em not too different}. In this paper, we ask the question: {\em Can we design a decentralized parallel stochastic gradient descent algorithm that is less sensitive to the data variance across workers?} In this paper, we present D2^2, a novel decentralized parallel stochastic gradient descent algorithm designed for large data variance \xr{among workers} (imprecisely, "decentralized" data). The core of D2^2 is a variance blackuction extension of the standard D-PSGD algorithm, which improves the convergence rate from O(σnT+(nζ2)13T2/3)O\left({\sigma \over \sqrt{nT}} + {(n\zeta^2)^{\frac{1}{3}} \over T^{2/3}}\right) to O(σnT)O\left({\sigma \over \sqrt{nT}}\right) where ζ2\zeta^{2} denotes the variance among data on different workers. As a result, D2^2 is robust to data variance among workers. We empirically evaluated D2^2 on image classification tasks where each worker has access to only the data of a limited set of labels, and find that D2^2 significantly outperforms D-PSGD

    Performance Analysis of the Decentralized Eigendecomposition and ESPRIT Algorithm

    Full text link
    In this paper, we consider performance analysis of the decentralized power method for the eigendecomposition of the sample covariance matrix based on the averaging consensus protocol. An analytical expression of the second order statistics of the eigenvectors obtained from the decentralized power method which is required for computing the mean square error (MSE) of subspace-based estimators is presented. We show that the decentralized power method is not an asymptotically consistent estimator of the eigenvectors of the true measurement covariance matrix unless the averaging consensus protocol is carried out over an infinitely large number of iterations. Moreover, we introduce the decentralized ESPRIT algorithm which yields fully decentralized direction-of-arrival (DOA) estimates. Based on the performance analysis of the decentralized power method, we derive an analytical expression of the MSE of DOA estimators using the decentralized ESPRIT algorithm. The validity of our asymptotic results is demonstrated by simulations.Comment: 18 pages, 5 figures, submitted for publication in IEEE Transactions on Signal Processin

    Decentralized Overview

    Get PDF
    13 slide

    Decentralized Constraint Satisfaction

    Get PDF
    We show that several important resource allocation problems in wireless networks fit within the common framework of Constraint Satisfaction Problems (CSPs). Inspired by the requirements of these applications, where variables are located at distinct network devices that may not be able to communicate but may interfere, we define natural criteria that a CSP solver must possess in order to be practical. We term these algorithms decentralized CSP solvers. The best known CSP solvers were designed for centralized problems and do not meet these criteria. We introduce a stochastic decentralized CSP solver and prove that it will find a solution in almost surely finite time, should one exist, also showing it has many practically desirable properties. We benchmark the algorithm's performance on a well-studied class of CSPs, random k-SAT, illustrating that the time the algorithm takes to find a satisfying assignment is competitive with stochastic centralized solvers on problems with order a thousand variables despite its decentralized nature. We demonstrate the solver's practical utility for the problems that motivated its introduction by using it to find a non-interfering channel allocation for a network formed from data from downtown Manhattan

    Instantaneous Decentralized Poker

    Get PDF
    We present efficient protocols for amortized secure multiparty computation with penalties and secure cash distribution, of which poker is a prime example. Our protocols have an initial phase where the parties interact with a cryptocurrency network, that then enables them to interact only among themselves over the course of playing many poker games in which money changes hands. The high efficiency of our protocols is achieved by harnessing the power of stateful contracts. Compared to the limited expressive power of Bitcoin scripts, stateful contracts enable richer forms of interaction between standard secure computation and a cryptocurrency. We formalize the stateful contract model and the security notions that our protocols accomplish, and provide proofs using the simulation paradigm. Moreover, we provide a reference implementation in Ethereum/Solidity for the stateful contracts that our protocols are based on. We also adopt our off-chain cash distribution protocols to the special case of stateful duplex micropayment channels, which are of independent interest. In comparison to Bitcoin based payment channels, our duplex channel implementation is more efficient and has additional features
    • …
    corecore