4 research outputs found

    Platform-based design, test and fast verification flow for mixed-signal systems on chip

    Get PDF
    This research is providing methodologies to enhance the design phase from architectural space exploration and system study to verification of the whole mixed-signal system. At the beginning of the work, some innovative digital IPs have been designed to develop efficient signal conditioning for sensor systems on-chip that has been included in commercial products. After this phase, the main focus has been addressed to the creation of a re-usable and versatile test of the device after the tape-out which is close to become one of the major cost factor for ICs companies, strongly linking it to model’s test-benches to avoid re-design phases and multi-environment scenarios, producing a very effective approach to a single, fast and reliable multi-level verification environment. All these works generated different publications in scientific literature. The compound scenario concerning the development of sensor systems is presented in Chapter 1, together with an overview of the related market with a particular focus on the latest MEMS and MOEMS technology devices, and their applications in various segments. Chapter 2 introduces the state of the art for sensor interfaces: the generic sensor interface concept (based on sharing the same electronics among similar applications achieving cost saving at the expense of area and performance loss) versus the Platform Based Design methodology, which overcomes the drawbacks of the classic solution by keeping the generality at the highest design layers and customizing the platform for a target sensor achieving optimized performances. An evolution of Platform Based Design achieved by implementation into silicon of the ISIF (Intelligent Sensor InterFace) platform is therefore presented. ISIF is a highly configurable mixed-signal chip which allows designers to perform an effective design space exploration and to evaluate directly on silicon the system performances avoiding the critical and time consuming analysis required by standard platform based approach. In chapter 3 we describe the design of a smart sensor interface for conditioning next generation MOEMS. The adoption of a new, high performance and high integrated technology allow us to integrate not only a versatile platform but also a powerful ARM processor and various IPs providing the possibility to use the platform not only as a conditioning platform but also as a processing unit for the application. In this chapter a description of the various blocks is given, with a particular emphasis on the IP developed in order to grant the highest grade of flexibility with the minimum area occupation. The architectural space evaluation and the application prototyping with ISIF has enabled an effective, rapid and low risk development of a new high performance platform achieving a flexible sensor system for MEMS and MOEMS monitoring and conditioning. The platform has been design to cover very challenging test-benches, like a laser-based projector device. In this way the platform will not only be able to effectively handle the sensor but also all the system that can be built around it, reducing the needed for further electronics and resulting in an efficient test bench for the algorithm developed to drive the system. The high costs in ASIC development are mainly related to re-design phases because of missing complete top-level tests. Analog and digital parts design flows are separately verified. Starting from these considerations, in the last chapter a complete test environment for complex mixed-signal chips is presented. A semi-automatic VHDL-AMS flow to provide totally matching top-level is described and then, an evolution for fast self-checking test development for both model and real chip verification is proposed. By the introduction of a Python interface, the designer can easily perform interactive tests to cover all the features verification (e.g. calibration and trimming) into the design phase and check them all with the same environment on the real chip after the tape-out. This strategy has been tested on a consumer 3D-gyro for consumer application, in collaboration with SensorDynamics AG

    Next generation automotive embedded systems-on-chip and their applications

    Get PDF
    It is a well known fact in the automotive industry that critical and costly delays in the development cycle of powertrain1 controllers are unavoidable due to the complex nature of the systems-on-chip used in them. The primary goal of this portfolio is to show the development of new methodologies for the fast and efficient implementation of next generation powertrain applications and the associated automotive qualified systems-on-chip. A general guideline for rapid automotive applications development, promoting the integration of state-of-the-art tools and techniques necessary, is presented. The methods developed in this portfolio demonstrate a new and better approach to co-design of automotive systems that also raises the level of design abstraction.An integrated business plan for the development of a camless engine controller platform is presented. The plan provides details for the marketing plan, management and financial data.A comprehensive real-time system level development methodology for the implementation of an electromagnetic actuator based camless internal combustion engine is developed. The proposed development platform enables developers to complete complex software and hardware development before moving to silicon, significantly shortening the development cycle and improving confidence in the design.A novel high performance internal combustion engine knock processing strategy using the next generation automotive system-on-chip, particularly highlighting the capabilities of the first-of-its-kind single-instruction-multiple-data micro-architecture is presented. A patent application has been filed for the methodology and the details of the invention are also presented.Enhancements required for the performance optimisation of several resource properties such as memory accesses, energy consumption and execution time of embedded powertrain applications running on the developed system-on-chip and its next generation of devices is proposed. The approach used allows the replacement of various software segments by hardware units to speed up processing.1 Powertrain: A name applied to the group of components used to transmit engine power to the driving wheels. It can consist of engine, clutch, transmission, universal joints, drive shaft, differential gear, and axle shafts

    Modellierung von On-Chip-Trace-Architekturen fĂĽr eingebettete Systeme

    Get PDF
    Das als Trace bezeichnete nicht-invasive Aufzeichnen von Systemzuständen, während ein eingebettetes System unter realen Einsatzbedingungen in Echtzeit läuft und mit der Systemumgebung interagiert, ist ein wichtiger Teil von Softwaretests. Die Notwendigkeit für den On-Chip-Trace resultiert aus der rückläufigen Einsetzbarkeit etablierter Werkzeuge für den Off-Chip-Trace. Ein wesentlicher Bestandteil von On-Chip-Trace-Architekturen ist die Volumenreduktion der Tracedaten in deren Entstehungsgeschwindigkeit direkt auf dem Chip. Der Schwerpunkt liegt auf dem Trace des Instruktionsflusses von Prozessoren. Der aktuelle Stand der Forschung zeigt zwei Ausprägungen. Bei einfachen Lösungen ist der Kompressionsfaktor zu klein. Aufwendigere Lösungen liefern einen unvollständigen Instruktionstrace, wenn auch sequentielle Befehle bedingt ausgeführt werden. Bisher existieren keine Lösungen, die einen vollständigen Instruktionstrace mit hoher Kompression realisieren. Diese Lücke wird in der vorliegenden Arbeit geschlossen. Der systematische Entwurf der neuen On-Chip-Trace-Architektur beginnt mit der umfassenden Analyse typischer Benchmarkprogramme. Aus den Ergebnissen werden grundlegende Entwurfsentscheidungen abgeleitet. Diese Bitsequenzen von Ausführungsbits, die bei der bedingten Befehlsausführung entstehen, und die Zieladressen ausgeführter indirekter Sprünge werden in unabhängigen Kompressoren verarbeitet. Ein nachgeschalteter Kompressor für die Messages der anderen beiden Kompressoren ist optional und kann die Kompression weiter steigern. Diese Aufteilung stellt ein architektonisches Novum dar. Die Kompression von Bitsequenzen ist bisher ein weitestgehend unbehandeltes Feld. Implementiert worden ist hierfür ein gleitendes Wörterbuch mit der Granularität von Einzelbits. Die Vergleiche mit den untersuchten existierenden Architekturen zeigen die Überlegenheit der neuen Architektur bei der Kompression. Ein vollständiger Instruktionstrace ist für Prozessoren mit und ohne bedingt ausführbaren sequentiellen Befehlen realisiert worden
    corecore