23 research outputs found

    Computational Imaging Approach to Recovery of Target Coordinates Using Orbital Sensor Data

    Get PDF
    This dissertation addresses the components necessary for simulation of an image-based recovery of the position of a target using orbital image sensors. Each component is considered in detail, focusing on the effect that design choices and system parameters have on the accuracy of the position estimate. Changes in sensor resolution, varying amounts of blur, differences in image noise level, selection of algorithms used for each component, and lag introduced by excessive processing time all contribute to the accuracy of the result regarding recovery of target coordinates using orbital sensor data. Using physical targets and sensors in this scenario would be cost-prohibitive in the exploratory setting posed, therefore a simulated target path is generated using Bezier curves which approximate representative paths followed by the targets of interest. Orbital trajectories for the sensors are designed on an elliptical model representative of the motion of physical orbital sensors. Images from each sensor are simulated based on the position and orientation of the sensor, the position of the target, and the imaging parameters selected for the experiment (resolution, noise level, blur level, etc.). Post-processing of the simulated imagery seeks to reduce noise and blur and increase resolution. The only information available for calculating the target position by a fully implemented system are the sensor position and orientation vectors and the images from each sensor. From these data we develop a reliable method of recovering the target position and analyze the impact on near-realtime processing. We also discuss the influence of adjustments to system components on overall capabilities and address the potential system size, weight, and power requirements from realistic implementation approaches

    Volumetric MRI Reconstruction from 2D Slices in the Presence of Motion

    Get PDF
    Despite recent advances in acquisition techniques and reconstruction algorithms, magnetic resonance imaging (MRI) remains challenging in the presence of motion. To mitigate this, ultra-fast two-dimensional (2D) MRI sequences are often used in clinical practice to acquire thick, low-resolution (LR) 2D slices to reduce in-plane motion. The resulting stacks of thick 2D slices typically provide high-quality visualizations when viewed in the in-plane direction. However, the low spatial resolution in the through-plane direction in combination with motion commonly occurring between individual slice acquisitions gives rise to stacks with overall limited geometric integrity. In further consequence, an accurate and reliable diagnosis may be compromised when using such motion-corrupted, thick-slice MRI data. This thesis presents methods to volumetrically reconstruct geometrically consistent, high-resolution (HR) three-dimensional (3D) images from motion-corrupted, possibly sparse, low-resolution 2D MR slices. It focuses on volumetric reconstructions techniques using inverse problem formulations applicable to a broad field of clinical applications in which associated motion patterns are inherently different, but the use of thick-slice MR data is current clinical practice. In particular, volumetric reconstruction frameworks are developed based on slice-to-volume registration with inter-slice transformation regularization and robust, complete-outlier rejection for the reconstruction step that can either avoid or efficiently deal with potential slice-misregistrations. Additionally, this thesis describes efficient Forward-Backward Splitting schemes for image registration for any combination of differentiable (not necessarily convex) similarity measure and convex (not necessarily smooth) regularization with a tractable proximal operator. Experiments are performed on fetal and upper abdominal MRI, and on historical, printed brain MR films associated with a uniquely long-term study dating back to the 1980s. The results demonstrate the broad applicability of the presented frameworks to achieve robust reconstructions with the potential to improve disease diagnosis and patient management in clinical practice

    Fast imaging in non-standard X-ray computed tomography geometries

    Get PDF

    Fast Fourier Transform at Nonequispaced Nodes and Applications

    Full text link
    The direct computation of the discrete Fourier transform at arbitrary nodes requires O(NM) arithmetical operations, too much for practical purposes. For equally spaced nodes the computation can be done by the well known fast Fourier transform (FFT) in only O(N log N) arithmetical operations. Recently, the fast Fourier transform for nonequispaced nodes (NFFT) was developed for the fast approximative computation of the above sums in only O(N log N + M log 1/e), where e denotes the required accuracy. The principal topics of this thesis are generalizations and applications of the NFFT. This includes the following subjects: - Algorithms for the fast approximative computation of the discrete cosine and sine transform at nonequispaced nodes are developed by applying fast trigonometric transforms instead of FFTs. - An algorithm for the fast Fourier transform on hyperbolic cross points with nonequispaced spatial nodes in 2 and 3 dimensions based on the NFFT and an appropriate partitioning of the hyperbolic cross is proposed. - A unified linear algebraic approach to recent methods for the fast computation of matrix-vector-products with special dense matrices, namely the fast multipole method, fast mosaic-skeleton approximation and H-matrix arithmetic, is given. Moreover, the NFFT-based summation algorithm by Potts and Steidl is further developed and simplified by using algebraic polynomials instead of trigonometric polynomials and the error estimates are improved. - A new algorithm for the characterization of engineering surface topographies with line singularities is proposed. It is based on hard thresholding complex ridgelet coefficients combined with total variation minimization. The discrete ridgelet transform is designed by first using a discrete Radon transform based on the NFFT and then applying a dual-tree complex wavelet transform. - A new robust local scattered data approximation method is introduced. It is an advancement of the moving least squares approximation (MLS) and generalizes an approach of van den Boomgard and van de Weijer to scattered data. In particular, the new method is space and data adaptive

    A Computer Vision Story on Video Sequences::From Face Detection to Face Super- Resolution using Face Quality Assessment

    Get PDF
    corecore