233 research outputs found

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Blur2sharp: A gan-based model for document image deblurring

    Get PDF
    The advances in mobile technology and portable cameras have facilitated enormously the acquisition of text images. However, the blur caused by camera shake or out-of-focus problems may affect the quality of acquired images and their use as input for optical character recognition (OCR) or other types of document processing. This work proposes an end-to-end model for document deblurring using cycle-consistent adversarial networks. The main novelty of this work is to achieve blind document deblurring, i.e., deblurring without knowledge of the blur kernel. Our method, named “Blur2Sharp CycleGAN, ” generates a sharp image from a blurry one and shows how cycle-consistent generative adversarial networks (CycleGAN) can be used in document deblurring. Using only a blurred image as input, we try to generate the sharp image. Thus, no information about the blur kernel is required. In the evaluation part, we use peak signal to noise ratio (PSNR) and structural similarity index (SSIM) to compare the deblurring images. The experiments demonstrate a clear improvement in visual quality with respect to the state-of-the-art using a dataset of text images

    Seven ways to improve example-based single image super resolution

    Full text link
    In this paper we present seven techniques that everybody should know to improve example-based single image super resolution (SR): 1) augmentation of data, 2) use of large dictionaries with efficient search structures, 3) cascading, 4) image self-similarities, 5) back projection refinement, 6) enhanced prediction by consistency check, and 7) context reasoning. We validate our seven techniques on standard SR benchmarks (i.e. Set5, Set14, B100) and methods (i.e. A+, SRCNN, ANR, Zeyde, Yang) and achieve substantial improvements.The techniques are widely applicable and require no changes or only minor adjustments of the SR methods. Moreover, our Improved A+ (IA) method sets new state-of-the-art results outperforming A+ by up to 0.9dB on average PSNR whilst maintaining a low time complexity.Comment: 9 page

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented

    Artificial Intelligence in the Creative Industries: A Review

    Full text link
    This paper reviews the current state of the art in Artificial Intelligence (AI) technologies and applications in the context of the creative industries. A brief background of AI, and specifically Machine Learning (ML) algorithms, is provided including Convolutional Neural Network (CNNs), Generative Adversarial Networks (GANs), Recurrent Neural Networks (RNNs) and Deep Reinforcement Learning (DRL). We categorise creative applications into five groups related to how AI technologies are used: i) content creation, ii) information analysis, iii) content enhancement and post production workflows, iv) information extraction and enhancement, and v) data compression. We critically examine the successes and limitations of this rapidly advancing technology in each of these areas. We further differentiate between the use of AI as a creative tool and its potential as a creator in its own right. We foresee that, in the near future, machine learning-based AI will be adopted widely as a tool or collaborative assistant for creativity. In contrast, we observe that the successes of machine learning in domains with fewer constraints, where AI is the `creator', remain modest. The potential of AI (or its developers) to win awards for its original creations in competition with human creatives is also limited, based on contemporary technologies. We therefore conclude that, in the context of creative industries, maximum benefit from AI will be derived where its focus is human centric -- where it is designed to augment, rather than replace, human creativity
    • …
    corecore