1,013 research outputs found

    Extreme Channel Prior Embedded Network for Dynamic Scene Deblurring

    Full text link
    Recent years have witnessed the significant progress on convolutional neural networks (CNNs) in dynamic scene deblurring. While CNN models are generally learned by the reconstruction loss defined on training data, incorporating suitable image priors as well as regularization terms into the network architecture could boost the deblurring performance. In this work, we propose an Extreme Channel Prior embedded Network (ECPeNet) to plug the extreme channel priors (i.e., priors on dark and bright channels) into a network architecture for effective dynamic scene deblurring. A novel trainable extreme channel prior embedded layer (ECPeL) is developed to aggregate both extreme channel and blurry image representations, and sparse regularization is introduced to regularize the ECPeNet model learning. Furthermore, we present an effective multi-scale network architecture that works in both coarse-to-fine and fine-to-coarse manners for better exploiting information flow across scales. Experimental results on GoPro and Kohler datasets show that our proposed ECPeNet performs favorably against state-of-the-art deep image deblurring methods in terms of both quantitative metrics and visual quality.Comment: 10 page

    Blind Image Deconvolution using Deep Generative Priors

    Full text link
    This paper proposes a novel approach to regularize the \textit{ill-posed} and \textit{non-linear} blind image deconvolution (blind deblurring) using deep generative networks as priors. We employ two separate generative models --- one trained to produce sharp images while the other trained to generate blur kernels from lower-dimensional parameters. To deblur, we propose an alternating gradient descent scheme operating in the latent lower-dimensional space of each of the pretrained generative models. Our experiments show promising deblurring results on images even under large blurs, and heavy noise. To address the shortcomings of generative models such as mode collapse, we augment our generative priors with classical image priors and report improved performance on complex image datasets. The deblurring performance depends on how well the range of the generator spans the image class. Interestingly, our experiments show that even an untrained structured (convolutional) generative networks acts as an image prior in the image deblurring context allowing us to extend our results to more diverse natural image datasets

    Adaptive Quantile Sparse Image (AQuaSI) Prior for Inverse Imaging Problems

    Full text link
    Inverse problems play a central role for many classical computer vision and image processing tasks. Many inverse problems are ill-posed, and hence require a prior to regularize the solution space. However, many of the existing priors, like total variation, are based on ad-hoc assumptions that have difficulties to represent the actual distribution of natural images. Thus, a key challenge in research on image processing is to find better suited priors to represent natural images. In this work, we propose the Adaptive Quantile Sparse Image (AQuaSI) prior. It is based on a quantile filter, can be used as a joint filter on guidance data, and be readily plugged into a wide range of numerical optimization algorithms. We demonstrate the efficacy of the proposed prior in joint RGB/depth upsampling, on RGB/NIR image restoration, and in a comparison with related regularization by denoising approaches

    Physics-Based Generative Adversarial Models for Image Restoration and Beyond

    Full text link
    We present an algorithm to directly solve numerous image restoration problems (e.g., image deblurring, image dehazing, image deraining, etc.). These problems are highly ill-posed, and the common assumptions for existing methods are usually based on heuristic image priors. In this paper, we find that these problems can be solved by generative models with adversarial learning. However, the basic formulation of generative adversarial networks (GANs) does not generate realistic images, and some structures of the estimated images are usually not preserved well. Motivated by an interesting observation that the estimated results should be consistent with the observed inputs under the physics models, we propose a physics model constrained learning algorithm so that it can guide the estimation of the specific task in the conventional GAN framework. The proposed algorithm is trained in an end-to-end fashion and can be applied to a variety of image restoration and related low-level vision problems. Extensive experiments demonstrate that our method performs favorably against the state-of-the-art algorithms.Comment: IEEE TPAM

    Learning to Deblur Images with Exemplars

    Full text link
    Human faces are one interesting object class with numerous applications. While significant progress has been made in the generic deblurring problem, existing methods are less effective for blurry face images. The success of the state-of-the-art image deblurring algorithms stems mainly from implicit or explicit restoration of salient edges for kernel estimation. However, existing methods are less effective as only few edges can be restored from blurry face images for kernel estimation. In this paper, we address the problem of deblurring face images by exploiting facial structures. We propose a deblurring algorithm based on an exemplar dataset without using coarse-to-fine strategies or heuristic edge selections. In addition, we develop a convolutional neural network to restore sharp edges from blurry images for deblurring. Extensive experiments against the state-of-the-art methods demonstrate the effectiveness of the proposed algorithms for deblurring face images. In addition, we show the proposed algorithms can be applied to image deblurring for other object classes.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence 201

    DAVANet: Stereo Deblurring with View Aggregation

    Full text link
    Nowadays stereo cameras are more commonly adopted in emerging devices such as dual-lens smartphones and unmanned aerial vehicles. However, they also suffer from blurry images in dynamic scenes which leads to visual discomfort and hampers further image processing. Previous works have succeeded in monocular deblurring, yet there are few studies on deblurring for stereoscopic images. By exploiting the two-view nature of stereo images, we propose a novel stereo image deblurring network with Depth Awareness and View Aggregation, named DAVANet. In our proposed network, 3D scene cues from the depth and varying information from two views are incorporated, which help to remove complex spatially-varying blur in dynamic scenes. Specifically, with our proposed fusion network, we integrate the bidirectional disparities estimation and deblurring into a unified framework. Moreover, we present a large-scale multi-scene dataset for stereo deblurring, containing 20,637 blurry-sharp stereo image pairs from 135 diverse sequences and their corresponding bidirectional disparities. The experimental results on our dataset demonstrate that DAVANet outperforms state-of-the-art methods in terms of accuracy, speed, and model size.Comment: CVPR 2019 (Oral

    Modelling the Scene Dependent Imaging in Cameras with a Deep Neural Network

    Full text link
    We present a novel deep learning framework that models the scene dependent image processing inside cameras. Often called as the radiometric calibration, the process of recovering RAW images from processed images (JPEG format in the sRGB color space) is essential for many computer vision tasks that rely on physically accurate radiance values. All previous works rely on the deterministic imaging model where the color transformation stays the same regardless of the scene and thus they can only be applied for images taken under the manual mode. In this paper, we propose a data-driven approach to learn the scene dependent and locally varying image processing inside cameras under the automode. Our method incorporates both the global and the local scene context into pixel-wise features via multi-scale pyramid of learnable histogram layers. The results show that we can model the imaging pipeline of different cameras that operate under the automode accurately in both directions (from RAW to sRGB, from sRGB to RAW) and we show how we can apply our method to improve the performance of image deblurring.Comment: To appear in ICCV 201

    Deep joint rain and haze removal from single images

    Full text link
    Rain removal from a single image is a challenge which has been studied for a long time. In this paper, a novel convolutional neural network based on wavelet and dark channel is proposed. On one hand, we think that rain streaks correspond to high frequency component of the image. Therefore, haar wavelet transform is a good choice to separate the rain streaks and background to some extent. More specifically, the LL subband of a rain image is more inclined to express the background information, while LH, HL, HH subband tend to represent the rain streaks and the edges. On the other hand, the accumulation of rain streaks from long distance makes the rain image look like haze veil. We extract dark channel of rain image as a feature map in network. By increasing this mapping between the dark channel of input and output images, we achieve haze removal in an indirect way. All of the parameters are optimized by back-propagation. Experiments on both synthetic and real- world datasets reveal that our method outperforms other state-of- the-art methods from a qualitative and quantitative perspective.Comment: 6 page

    Blind Motion Deblurring with Cycle Generative Adversarial Networks

    Full text link
    Blind motion deblurring is one of the most basic and challenging problems in image processing and computer vision. It aims to recover a sharp image from its blurred version knowing nothing about the blur process. Many existing methods use Maximum A Posteriori (MAP) or Expectation Maximization (EM) frameworks to deal with this kind of problems, but they cannot handle well the figh frequency features of natural images. Most recently, deep neural networks have been emerging as a powerful tool for image deblurring. In this paper, we prove that encoder-decoder architecture gives better results for image deblurring tasks. In addition, we propose a novel end-to-end learning model which refines generative adversarial network by many novel training strategies so as to tackle the problem of deblurring. Experimental results show that our model can capture high frequency features well, and the results on benchmark dataset show that proposed model achieves the competitive performance

    Spatio-Temporal Filter Adaptive Network for Video Deblurring

    Full text link
    Video deblurring is a challenging task due to the spatially variant blur caused by camera shake, object motions, and depth variations, etc. Existing methods usually estimate optical flow in the blurry video to align consecutive frames or approximate blur kernels. However, they tend to generate artifacts or cannot effectively remove blur when the estimated optical flow is not accurate. To overcome the limitation of separate optical flow estimation, we propose a Spatio-Temporal Filter Adaptive Network (STFAN) for the alignment and deblurring in a unified framework. The proposed STFAN takes both blurry and restored images of the previous frame as well as blurry image of the current frame as input, and dynamically generates the spatially adaptive filters for the alignment and deblurring. We then propose the new Filter Adaptive Convolutional (FAC) layer to align the deblurred features of the previous frame with the current frame and remove the spatially variant blur from the features of the current frame. Finally, we develop a reconstruction network which takes the fusion of two transformed features to restore the clear frames. Both quantitative and qualitative evaluation results on the benchmark datasets and real-world videos demonstrate that the proposed algorithm performs favorably against state-of-the-art methods in terms of accuracy, speed as well as model size.Comment: ICCV 201
    corecore