13,249 research outputs found
Learning to Deblur Images with Exemplars
Human faces are one interesting object class with numerous applications.
While significant progress has been made in the generic deblurring problem,
existing methods are less effective for blurry face images. The success of the
state-of-the-art image deblurring algorithms stems mainly from implicit or
explicit restoration of salient edges for kernel estimation. However, existing
methods are less effective as only few edges can be restored from blurry face
images for kernel estimation. In this paper, we address the problem of
deblurring face images by exploiting facial structures. We propose a deblurring
algorithm based on an exemplar dataset without using coarse-to-fine strategies
or heuristic edge selections. In addition, we develop a convolutional neural
network to restore sharp edges from blurry images for deblurring. Extensive
experiments against the state-of-the-art methods demonstrate the effectiveness
of the proposed algorithms for deblurring face images. In addition, we show the
proposed algorithms can be applied to image deblurring for other object
classes.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine
Intelligence 201
Fast and easy blind deblurring using an inverse filter and PROBE
PROBE (Progressive Removal of Blur Residual) is a recursive framework for
blind deblurring. Using the elementary modified inverse filter at its core,
PROBE's experimental performance meets or exceeds the state of the art, both
visually and quantitatively. Remarkably, PROBE lends itself to analysis that
reveals its convergence properties. PROBE is motivated by recent ideas on
progressive blind deblurring, but breaks away from previous research by its
simplicity, speed, performance and potential for analysis. PROBE is neither a
functional minimization approach, nor an open-loop sequential method (blur
kernel estimation followed by non-blind deblurring). PROBE is a feedback
scheme, deriving its unique strength from the closed-loop architecture rather
than from the accuracy of its algorithmic components
Simultaneous Stereo Video Deblurring and Scene Flow Estimation
Videos for outdoor scene often show unpleasant blur effects due to the large
relative motion between the camera and the dynamic objects and large depth
variations. Existing works typically focus monocular video deblurring. In this
paper, we propose a novel approach to deblurring from stereo videos. In
particular, we exploit the piece-wise planar assumption about the scene and
leverage the scene flow information to deblur the image. Unlike the existing
approach [31] which used a pre-computed scene flow, we propose a single
framework to jointly estimate the scene flow and deblur the image, where the
motion cues from scene flow estimation and blur information could reinforce
each other, and produce superior results than the conventional scene flow
estimation or stereo deblurring methods. We evaluate our method extensively on
two available datasets and achieve significant improvement in flow estimation
and removing the blur effect over the state-of-the-art methods.Comment: Accepted to IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR) 201
DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks
We present DeblurGAN, an end-to-end learned method for motion deblurring. The
learning is based on a conditional GAN and the content loss . DeblurGAN
achieves state-of-the art performance both in the structural similarity measure
and visual appearance. The quality of the deblurring model is also evaluated in
a novel way on a real-world problem -- object detection on (de-)blurred images.
The method is 5 times faster than the closest competitor -- DeepDeblur. We also
introduce a novel method for generating synthetic motion blurred images from
sharp ones, allowing realistic dataset augmentation.
The model, code and the dataset are available at
https://github.com/KupynOrest/DeblurGANComment: CVPR 2018 camera-read
- …
