5,290 research outputs found

    On the Deployment of Healthcare Applications over Fog Computing Infrastructure

    Get PDF
    Fog computing is considered as the most promising enhancement of the traditional cloud computing paradigm in order to handle potential issues introduced by the emerging Interned of Things (IoT) framework at the network edge. The heterogeneous nature, the extensive distribution and the hefty number of deployed IoT nodes will disrupt existing functional models, creating confusion. However, IoT will facilitate the rise of new applications, with automated healthcare monitoring platforms being amongst them. This paper presents the pillars of design for such applications, along with the evaluation of a working prototype that collects ECG traces from a tailor-made device and utilizes the patient's smartphone as a Fog gateway for securely sharing them to other authorized entities. This prototype will allow patients to share information to their physicians, monitor their health status independently and notify the authorities rapidly in emergency situations. Historical data will also be available for further analysis, towards identifying patterns that may improve medical diagnoses in the foreseeable future

    Detecting Irregular Patterns in IoT Streaming Data for Fall Detection

    Full text link
    Detecting patterns in real time streaming data has been an interesting and challenging data analytics problem. With the proliferation of a variety of sensor devices, real-time analytics of data from the Internet of Things (IoT) to learn regular and irregular patterns has become an important machine learning problem to enable predictive analytics for automated notification and decision support. In this work, we address the problem of learning an irregular human activity pattern, fall, from streaming IoT data from wearable sensors. We present a deep neural network model for detecting fall based on accelerometer data giving 98.75 percent accuracy using an online physical activity monitoring dataset called "MobiAct", which was published by Vavoulas et al. The initial model was developed using IBM Watson studio and then later transferred and deployed on IBM Cloud with the streaming analytics service supported by IBM Streams for monitoring real-time IoT data. We also present the systems architecture of the real-time fall detection framework that we intend to use with mbientlabs wearable health monitoring sensors for real time patient monitoring at retirement homes or rehabilitation clinics.Comment: 7 page

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    Design and evaluation of a person-centric heart monitoring system over fog computing infrastructure

    Get PDF
    Heart disease and stroke are becoming the leading cause of death worldwide. Electrocardiography monitoring devices (ECG) are the only tool that helps physicians diagnose cardiac abnormalities. Although the design of ECGs has followed closely the electronics miniaturization evolution over the years, existing wearable ECG have limited accuracy and rely on external resources to analyze the signal and evaluate heart activity. In this paper, we work towards empowering the wearable device with processing capabilities to locally analyze the signal and identify abnormal behavior. The ability to differentiate between normal and abnormal heart activity significantly reduces (a) the need to store the signals, (b) the data transmitted to the cloud and (c) the overall power consumption. Based on this concept, the HEART platform is presented that combines wearable embedded devices, mobile edge devices, and cloud services to provide on-the-spot, reliable, accurate and instant monitoring of the heart. The performance of the system is evaluated concerning the accuracy of detecting abnormal events and the power consumption of the wearable device. Results indicate that a very high percentage of success can be achieved in terms of event detection ratio and the device being operative up to a several days without the need for a recharge

    Visions and Challenges in Managing and Preserving Data to Measure Quality of Life

    Full text link
    Health-related data analysis plays an important role in self-knowledge, disease prevention, diagnosis, and quality of life assessment. With the advent of data-driven solutions, a myriad of apps and Internet of Things (IoT) devices (wearables, home-medical sensors, etc) facilitates data collection and provide cloud storage with a central administration. More recently, blockchain and other distributed ledgers became available as alternative storage options based on decentralised organisation systems. We bring attention to the human data bleeding problem and argue that neither centralised nor decentralised system organisations are a magic bullet for data-driven innovation if individual, community and societal values are ignored. The motivation for this position paper is to elaborate on strategies to protect privacy as well as to encourage data sharing and support open data without requiring a complex access protocol for researchers. Our main contribution is to outline the design of a self-regulated Open Health Archive (OHA) system with focus on quality of life (QoL) data.Comment: DSS 2018: Data-Driven Self-Regulating System
    • …
    corecore