6,507 research outputs found

    Attend Refine Repeat: Active Box Proposal Generation via In-Out Localization

    Full text link
    The problem of computing category agnostic bounding box proposals is utilized as a core component in many computer vision tasks and thus has lately attracted a lot of attention. In this work we propose a new approach to tackle this problem that is based on an active strategy for generating box proposals that starts from a set of seed boxes, which are uniformly distributed on the image, and then progressively moves its attention on the promising image areas where it is more likely to discover well localized bounding box proposals. We call our approach AttractioNet and a core component of it is a CNN-based category agnostic object location refinement module that is capable of yielding accurate and robust bounding box predictions regardless of the object category. We extensively evaluate our AttractioNet approach on several image datasets (i.e. COCO, PASCAL, ImageNet detection and NYU-Depth V2 datasets) reporting on all of them state-of-the-art results that surpass the previous work in the field by a significant margin and also providing strong empirical evidence that our approach is capable to generalize to unseen categories. Furthermore, we evaluate our AttractioNet proposals in the context of the object detection task using a VGG16-Net based detector and the achieved detection performance on COCO manages to significantly surpass all other VGG16-Net based detectors while even being competitive with a heavily tuned ResNet-101 based detector. Code as well as box proposals computed for several datasets are available at:: https://github.com/gidariss/AttractioNet.Comment: Technical report. Code as well as box proposals computed for several datasets are available at:: https://github.com/gidariss/AttractioNe

    Deep Eyes: Binocular Depth-from-Focus on Focal Stack Pairs

    Full text link
    Human visual system relies on both binocular stereo cues and monocular focusness cues to gain effective 3D perception. In computer vision, the two problems are traditionally solved in separate tracks. In this paper, we present a unified learning-based technique that simultaneously uses both types of cues for depth inference. Specifically, we use a pair of focal stacks as input to emulate human perception. We first construct a comprehensive focal stack training dataset synthesized by depth-guided light field rendering. We then construct three individual networks: a Focus-Net to extract depth from a single focal stack, a EDoF-Net to obtain the extended depth of field (EDoF) image from the focal stack, and a Stereo-Net to conduct stereo matching. We show how to integrate them into a unified BDfF-Net to obtain high-quality depth maps. Comprehensive experiments show that our approach outperforms the state-of-the-art in both accuracy and speed and effectively emulates human vision systems

    Depth Estimation via Affinity Learned with Convolutional Spatial Propagation Network

    Full text link
    Depth estimation from a single image is a fundamental problem in computer vision. In this paper, we propose a simple yet effective convolutional spatial propagation network (CSPN) to learn the affinity matrix for depth prediction. Specifically, we adopt an efficient linear propagation model, where the propagation is performed with a manner of recurrent convolutional operation, and the affinity among neighboring pixels is learned through a deep convolutional neural network (CNN). We apply the designed CSPN to two depth estimation tasks given a single image: (1) To refine the depth output from state-of-the-art (SOTA) existing methods; and (2) to convert sparse depth samples to a dense depth map by embedding the depth samples within the propagation procedure. The second task is inspired by the availability of LIDARs that provides sparse but accurate depth measurements. We experimented the proposed CSPN over two popular benchmarks for depth estimation, i.e. NYU v2 and KITTI, where we show that our proposed approach improves in not only quality (e.g., 30% more reduction in depth error), but also speed (e.g., 2 to 5 times faster) than prior SOTA methods.Comment: 14 pages, 8 figures, ECCV 201
    • …
    corecore