6 research outputs found

    Secure Real-time Data Transmission for Drone Delivery Services using Forward Prediction Scheduling SCTP

    Get PDF
    Drone technology is considered the most effective solution for the improvement of various industrial fields. As a delivery service, drones need a secure communication system that is also able to manage all of the information data in real-time.  However, because the data transmission process occurs in a wireless network, data will be sent over a channel that is more unstable and vulnerable to attack. Thus, this research, purposes a  Forward Prediction Scheduling-based Stream Control Transmission Protocol (FPS-SCTP) scheme that is implemented on drone data transmission system. This scheme supports piggybacking, multi-streaming, and Late Messages Filter (LMF) which will improve the real-time transmission process in IEEE 802.11 wireless network. Meanwhile, on the cybersecurity aspect, this scheme provides the embedded option feature to enable the encryption mechanism using AES and the digital signatures mechanism using ECDSA. The results show that the FPS-SCTP scheme has better network performance than the default SCTP, and provides full security services with low computation time. This research contributes to providing a communication protocol scheme that is suitable for use on the internet of drones’ environment, both in real-time and reliable security levels

    Security at the Attribute-Value Pair (AVP) Level for Non-neighboring Diameter Nodes: Scenarios and Requirements

    Get PDF
    Abstract This specification specifies requirements for providing Diameter security at the level of individual Attribute-Value Pairs (AVP

    Diameter Applications Design Guidelines

    Full text link

    Security of Symmetric Ratchets and Key Chains - Implications for Protocols like TLS 1.3, Signal, and PQ3

    Get PDF
    Symmetric ratchets and one-way key chains play a vital role in numerous important security protocols such as TLS 1.3, DTLS 1.3, QUIC, Signal, MLS, EDHOC, OSCORE, and Apple PQ3. Despite the crucial role they play, very little is known about their security properties. This paper categorizes and examines different ratchet constructions, offering a comprehensive overview of their security. Our analysis reveals notable distinctions between different types of one-way key chains. Notably, the type of ratchet used by TLS 1.3, Signal, and PQ3 exhibit a significant number of weak keys, an unexpectedly high rate of key collisions surpassing birthday attack expectations, and a predictable shrinking key space susceptible to novel Time-Memory Trade-Off (TMTO) attacks with complexity ≈N1/4\approx N^{1/4}. Consequently, the security level provided by e.g., TLS 1.3 is significantly lower than anticipated. To address these concerns, we analyze the aforementioned protocols and provide numerous concrete recommendations for enhancing their security, as well as guidance for future security protocol design

    Diameter Base Protocol

    Full text link
    corecore