232,154 research outputs found

    Database Vs Data Warehouse

    Get PDF
    Data warehouse technology includes a set of concepts and methods that offer the users useful information for decision making. The necessity to build a data warehouse arises from the necessity to improve the quality of information in the organization. The date proceeding from different sources, having a variety of forms - both structured and unstructured, are filtered according to business rules and are integrated in a single large data collection. Using informatics solutions, managers have understood that data stored in operational systems - including databases, are an informational gold mine that must be exploited. Data warehouses have been developed to answer the increasing demands for complex analysis, which could not be properly achieved with operational databases. The present paper emphasizes some of the criteria that information application developers can use in order to choose between a database solution or a data warehouse one.data warehouse, database, database management systems, information systems, data organisation in externe memory, business intelligence

    Distributed Approach to Neuroinformatic Data Interchange

    Get PDF
    This chapter presents the concepts and analysis of system and functional requirements for the database management system for neuro-informatics data. The basic idea is to enable the creation and sharing of biomedical and related data, resulting in several projects in the field of neuro-informatics and HMI. The main objective is to bring tools and methods for data collection, description and organization and the ability to choose any subset for further processing, where the results can be included back to the collection. An important feature is the ability to function in a distributed environment.Tato kapitola prezentuje koncepty a analýzu systémových a funkčních požadavků na systém řízení báze dat pro neuroinformatická data. Základní myšlenkou je umožnění vytváření a výměnu biomedicínských a příbuzných dat, vzniklých v rámci několika projektů na poli neuroinformatiky a HMI. Hlavním cílem je přinést nástroje a metody pro sběr dat, jejich popis a organizaci a možnost vybrat libovolnou podmnožinu pro další zpracování, kde výsledky tohoto zpracovnání lze zahrnout zpět do kolekce. Důležitým rysem je možnost funkce v distribuovaném prostředí.This chapter presents the concepts and analysis of system and functional requirements for the database management system for neuro-informatics data. The basic idea is to enable the creation and sharing of biomedical and related data, resulting in several projects in the field of neuro-informatics and HMI. The main objective is to bring tools and methods for data collection, description and organization and the ability to choose any subset for further processing, where the results can be included back to the collection. An important feature is the ability to function in a distributed environment

    The development of non-coding RNA ontology

    Get PDF
    Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data

    Optimal search strategies for identifying sound clinical prediction studies in EMBASE

    Get PDF
    BACKGROUND: Clinical prediction guides assist clinicians by pointing to specific elements of the patient's clinical presentation that should be considered when forming a diagnosis, prognosis or judgment regarding treatment outcome. The numbers of validated clinical prediction guides are growing in the medical literature, but their retrieval from large biomedical databases remains problematic and this presents a barrier to their uptake in medical practice. We undertook the systematic development of search strategies ("hedges") for retrieval of empirically tested clinical prediction guides from EMBASE. METHODS: An analytic survey was conducted, testing the retrieval performance of search strategies run in EMBASE against the gold standard of hand searching, using a sample of all 27,769 articles identified in 55 journals for the 2000 publishing year. All articles were categorized as original studies, review articles, general papers, or case reports. The original and review articles were then tagged as 'pass' or 'fail' for methodologic rigor in the areas of clinical prediction guides and other clinical topics. Search terms that depicted clinical prediction guides were selected from a pool of index terms and text words gathered in house and through request to clinicians, librarians and professional searchers. A total of 36,232 search strategies composed of single and multiple term phrases were trialed for retrieval of clinical prediction studies. The sensitivity, specificity, precision, and accuracy of search strategies were calculated to identify which were the best. RESULTS: 163 clinical prediction studies were identified, of which 69 (42.3%) passed criteria for scientific merit. A 3-term strategy optimized sensitivity at 91.3% and specificity at 90.2%. Higher sensitivity (97.1%) was reached with a different 3-term strategy, but with a 16% drop in specificity. The best measure of specificity (98.8%) was found in a 2-term strategy, but with a considerable fall in sensitivity to 60.9%. All single term strategies performed less well than 2- and 3-term strategies. CONCLUSION: The retrieval of sound clinical prediction studies from EMBASE is supported by several search strategies

    Exploiting the potential of large databases of electronic health records for research using rapid search algorithms and an intuitive query interface.

    Get PDF
    Objective: UK primary care databases, which contain diagnostic, demographic and prescribing information for millions of patients geographically representative of the UK, represent a significant resource for health services and clinical research. They can be used to identify patients with a specified disease or condition (phenotyping) and to investigate patterns of diagnosis and symptoms. Currently, extracting such information manually is time-consuming and requires considerable expertise. In order to exploit more fully the potential of these large and complex databases, our interdisciplinary team developed generic methods allowing access to different types of user. Materials and methods: Using the Clinical Practice Research Datalink database, we have developed an online user-focused system (TrialViz), which enables users interactively to select suitable medical general practices based on two criteria: suitability of the patient base for the intended study (phenotyping) and measures of data quality. Results: An end-to-end system, underpinned by an innovative search algorithm, allows the user to extract information in near real-time via an intuitive query interface and to explore this information using interactive visualization tools. A usability evaluation of this system produced positive results. Discussion: We present the challenges and results in the development of TrialViz and our plans for its extension for wider applications of clinical research. Conclusions: Our fast search algorithms and simple query algorithms represent a significant advance for users of clinical research databases
    corecore