385,114 research outputs found
Disparity and Optical Flow Partitioning Using Extended Potts Priors
This paper addresses the problems of disparity and optical flow partitioning
based on the brightness invariance assumption. We investigate new variational
approaches to these problems with Potts priors and possibly box constraints.
For the optical flow partitioning, our model includes vector-valued data and an
adapted Potts regularizer. Using the notation of asymptotically level stable
functions we prove the existence of global minimizers of our functionals. We
propose a modified alternating direction method of minimizers. This iterative
algorithm requires the computation of global minimizers of classical univariate
Potts problems which can be done efficiently by dynamic programming. We prove
that the algorithm converges both for the constrained and unconstrained
problems. Numerical examples demonstrate the very good performance of our
partitioning method
Large scale ab initio calculations based on three levels of parallelization
We suggest and implement a parallelization scheme based on an efficient
multiband eigenvalue solver, called the locally optimal block preconditioned
conjugate gradient LOBPCG method, and using an optimized three-dimensional (3D)
fast Fourier transform (FFT) in the ab initio}plane-wave code ABINIT. In
addition to the standard data partitioning over processors corresponding to
different k-points, we introduce data partitioning with respect to blocks of
bands as well as spatial partitioning in the Fourier space of coefficients over
the plane waves basis set used in ABINIT. This k-points-multiband-FFT
parallelization avoids any collective communications on the whole set of
processors relying instead on one-dimensional communications only. For a single
k-point, super-linear scaling is achieved for up to 100 processors due to an
extensive use of hardware optimized BLAS, LAPACK, and SCALAPACK routines,
mainly in the LOBPCG routine. We observe good performance up to 200 processors.
With 10 k-points our three-way data partitioning results in linear scaling up
to 1000 processors for a practical system used for testing.Comment: 8 pages, 5 figures. Accepted to Computational Material Scienc
Dividing population genetic distance data with the software Partitioning Optimization with Restricted Growth Strings (PORGS): an application for Chinook salmon (Oncorhynchus tshawytscha), Vancouver Island, British Columbia
A new method of finding the optimal group membership and number of groupings to partition population genetic distance data is presented. The software program Partitioning Optimization with Restricted Growth Strings (PORGS), visits all possible set partitions and deems
acceptable partitions to be those that reduce mean intracluster distance. The optimal number of groups is determined with the gap statistic which compares PORGS results with a reference distribution. The PORGS method was validated by a simulated data set with a known distribution.
For efficiency, where values of n were larger, restricted growth strings (RGS) were used to bipartition populations during a nested search (bi-PORGS). Bi-PORGS was applied to a set of genetic data from 18 Chinook salmon (Oncorhynchus
tshawytscha) populations from the west coast of Vancouver Island. The optimal grouping of these populations
corresponded to four geographic locations: 1) Quatsino Sound, 2) Nootka Sound, 3) Clayoquot +Barkley sounds,
and 4) southwest Vancouver Island. However, assignment of populations to groups did not strictly reflect the geographical divisions; fish of Barkley Sound origin that had strayed into the Gold River and close genetic similarity
between transferred and donor populations meant groupings crossed geographic boundaries. Overall, stock structure determined by this partitioning method was similar to that
determined by the unweighted pair-group method with arithmetic averages (UPGMA), an agglomerative clustering algorithm
- …
