48,857 research outputs found

    Data mining technology for the evaluation of web-based teaching and learning systems

    Get PDF
    Instructional design for Web-based teaching and learning environments causes problems for two reasons. Firstly, virtual forms of teaching and learning result in little or no direct contact between instructor and learner, making the evaluation of course effectiveness difficult. Secondly, the Web as a relatively new teaching and learning medium still requires more research into learning processes with this technology. We propose data mining – techniques to discover and extract knowledge from a database – as a tool to support the analysis of student learning processes and the evaluation of the effectiveness and usability of Web-based courses. We present and illustrate different data mining techniques for the evaluation of Web-based teaching and learning systems

    Data mining technology for the evaluation of learning content interaction

    Get PDF
    Interactivity is central for the success of learning. In e-learning and other educational multimedia environments, the evaluation of interaction and behaviour is particularly crucial. Data mining – a non-intrusive, objective analysis technology – shall be proposed as the central evaluation technology for the analysis of the usage of computer-based educational environments and in particular of the interaction with educational content. Basic mining techniques are reviewed and their application in a Web-based third-level course environment is illustrated. Analytic models capturing interaction aspects from the application domain (learning) and the software infrastructure (interactive multimedia) are required for the meaningful interpretation of mining results

    Evaluation of usage patterns for web-based educational systems using web mining

    Get PDF
    Virtual courses often separate teacher and student physically from one another, resulting in less direct feedback. The evaluation of virtual courses and other computer-supported educational systems is therefore of major importance in order to monitor student progress, guarantee the quality of the course and enhance the learning experience for the student. We present a technique for the usage evaluation of Web-based educational systems focussing on behavioural analysis, which is based on Web mining technologies. Sequential patterns are extracted from Web access logs and compared to expected behaviour

    A hybrid method for the analysis of learner behaviour in active learning environments

    Get PDF
    Software-mediated learning requires adjustments in the teaching and learning process. In particular active learning facilitated through interactive learning software differs from traditional instructor-oriented, classroom-based teaching. We present behaviour analysis techniques for Web-mediated learning. Motivation, acceptance of the learning approach and technology, learning organisation and actual tool usage are aspects of behaviour that require different analysis techniques to be used. A hybrid method based on a combination of survey methods and Web usage mining techniques can provide accurate and comprehensive analysis results. These techniques allow us to evaluate active learning approaches implemented in form of Web tutorials

    An evaluation of scaffolding for virtual interactive tutorials

    Get PDF
    Scaffolding refers to a temporary support framework used during construction. Applied to teaching and learning it describes measures to support a learner to become confident and self-reliant in a subject. In a Web environment scaffolding features need to replace the instructor. We discuss our approach to Web-based scaffolding based on the cognitive apprenticeship and activity theories. We suggest a set of four scaffold types that have made our scaffolding-supported virtual interactive tutorial successful. We present a novel evaluation approach for virtual tutorials that is embedded into an iterative, evolutionary instructional design

    Improving the quality of the personalized electronic program guide

    Get PDF
    As Digital TV subscribers are offered more and more channels, it is becoming increasingly difficult for them to locate the right programme information at the right time. The personalized Electronic Programme Guide (pEPG) is one solution to this problem; it leverages artificial intelligence and user profiling techniques to learn about the viewing preferences of individual users in order to compile personalized viewing guides that fit their individual preferences. Very often the limited availability of profiling information is a key limiting factor in such personalized recommender systems. For example, it is well known that collaborative filtering approaches suffer significantly from the sparsity problem, which exists because the expected item-overlap between profiles is usually very low. In this article we address the sparsity problem in the Digital TV domain. We propose the use of data mining techniques as a way of supplementing meagre ratings-based profile knowledge with additional item-similarity knowledge that can be automatically discovered by mining user profiles. We argue that this new similarity knowledge can significantly enhance the performance of a recommender system in even the sparsest of profile spaces. Moreover, we provide an extensive evaluation of our approach using two large-scale, state-of-the-art online systems—PTVPlus, a personalized TV listings portal and Físchlár, an online digital video library system

    Overcoming data scarcity of Twitter: using tweets as bootstrap with application to autism-related topic content analysis

    Full text link
    Notwithstanding recent work which has demonstrated the potential of using Twitter messages for content-specific data mining and analysis, the depth of such analysis is inherently limited by the scarcity of data imposed by the 140 character tweet limit. In this paper we describe a novel approach for targeted knowledge exploration which uses tweet content analysis as a preliminary step. This step is used to bootstrap more sophisticated data collection from directly related but much richer content sources. In particular we demonstrate that valuable information can be collected by following URLs included in tweets. We automatically extract content from the corresponding web pages and treating each web page as a document linked to the original tweet show how a temporal topic model based on a hierarchical Dirichlet process can be used to track the evolution of a complex topic structure of a Twitter community. Using autism-related tweets we demonstrate that our method is capable of capturing a much more meaningful picture of information exchange than user-chosen hashtags.Comment: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 201
    • 

    corecore