45,542 research outputs found

    A General Large Neighborhood Search Framework for Solving Integer Programs

    Get PDF
    This paper studies how to design abstractions of large-scale combinatorial optimization problems that can leverage existing state-of-the-art solvers in general purpose ways, and that are amenable to data-driven design. The goal is to arrive at new approaches that can reliably outperform existing solvers in wall-clock time. We focus on solving integer programs, and ground our approach in the large neighborhood search (LNS) paradigm, which iteratively chooses a subset of variables to optimize while leaving the remainder fixed. The appeal of LNS is that it can easily use any existing solver as a subroutine, and thus can inherit the benefits of carefully engineered heuristic approaches and their software implementations. We also show that one can learn a good neighborhood selector from training data. Through an extensive empirical validation, we demonstrate that our LNS framework can significantly outperform, in wall-clock time, compared to state-of-the-art commercial solvers such as Gurobi

    Adaptive Information Gathering via Imitation Learning

    Full text link
    In the adaptive information gathering problem, a policy is required to select an informative sensing location using the history of measurements acquired thus far. While there is an extensive amount of prior work investigating effective practical approximations using variants of Shannon's entropy, the efficacy of such policies heavily depends on the geometric distribution of objects in the world. On the other hand, the principled approach of employing online POMDP solvers is rendered impractical by the need to explicitly sample online from a posterior distribution of world maps. We present a novel data-driven imitation learning framework to efficiently train information gathering policies. The policy imitates a clairvoyant oracle - an oracle that at train time has full knowledge about the world map and can compute maximally informative sensing locations. We analyze the learnt policy by showing that offline imitation of a clairvoyant oracle is implicitly equivalent to online oracle execution in conjunction with posterior sampling. This observation allows us to obtain powerful near-optimality guarantees for information gathering problems possessing an adaptive sub-modularity property. As demonstrated on a spectrum of 2D and 3D exploration problems, the trained policies enjoy the best of both worlds - they adapt to different world map distributions while being computationally inexpensive to evaluate.Comment: Robotics Science and Systems, 201

    Efficient Supervision for Robot Learning via Imitation, Simulation, and Adaptation

    Full text link
    Recent successes in machine learning have led to a shift in the design of autonomous systems, improving performance on existing tasks and rendering new applications possible. Data-focused approaches gain relevance across diverse, intricate applications when developing data collection and curation pipelines becomes more effective than manual behaviour design. The following work aims at increasing the efficiency of this pipeline in two principal ways: by utilising more powerful sources of informative data and by extracting additional information from existing data. In particular, we target three orthogonal fronts: imitation learning, domain adaptation, and transfer from simulation.Comment: Dissertation Summar
    • …
    corecore