5 research outputs found

    Data-driven learning of robust nonlocal physics from high-fidelity synthetic data

    Full text link
    A key challenge to nonlocal models is the analytical complexity of deriving them from first principles, and frequently their use is justified a posteriori. In this work we extract nonlocal models from data, circumventing these challenges and providing data-driven justification for the resulting model form. Extracting provably robust data-driven surrogates is a major challenge for machine learning (ML) approaches, due to nonlinearities and lack of convexity. Our scheme allows extraction of provably invertible nonlocal models whose kernels may be partially negative. To achieve this, based on established nonlocal theory, we embed in our algorithm sufficient conditions on the non-positive part of the kernel that guarantee well-posedness of the learnt operator. These conditions are imposed as inequality constraints and ensure that models are robust, even in small-data regimes. We demonstrate this workflow for a range of applications, including reproduction of manufactured nonlocal kernels; numerical homogenization of Darcy flow associated with a heterogeneous periodic microstructure; nonlocal approximation to high-order local transport phenomena; and approximation of globally supported fractional diffusion operators by truncated kernels.Comment: 32 pages, 10 figures, 3 table

    Data-driven learning of nonlocal models: from high-fidelity simulations to constitutive laws

    Full text link
    We show that machine learning can improve the accuracy of simulations of stress waves in one-dimensional composite materials. We propose a data-driven technique to learn nonlocal constitutive laws for stress wave propagation models. The method is an optimization-based technique in which the nonlocal kernel function is approximated via Bernstein polynomials. The kernel, including both its functional form and parameters, is derived so that when used in a nonlocal solver, it generates solutions that closely match high-fidelity data. The optimal kernel therefore acts as a homogenized nonlocal continuum model that accurately reproduces wave motion in a smaller-scale, more detailed model that can include multiple materials. We apply this technique to wave propagation within a heterogeneous bar with a periodic microstructure. Several one-dimensional numerical tests illustrate the accuracy of our algorithm. The optimal kernel is demonstrated to reproduce high-fidelity data for a composite material in applications that are substantially different from the problems used as training data

    An optimization-based approach to parameter learning for fractional type nonlocal models

    Full text link
    Nonlocal operators of fractional type are a popular modeling choice for applications that do not adhere to classical diffusive behavior; however, one major challenge in nonlocal simulations is the selection of model parameters. In this work we propose an optimization-based approach to parameter identification for fractional models with an optional truncation radius. We formulate the inference problem as an optimal control problem where the objective is to minimize the discrepancy between observed data and an approximate solution of the model, and the control variables are the fractional order and the truncation length. For the numerical solution of the minimization problem we propose a gradient-based approach, where we enhance the numerical performance by an approximation of the bilinear form of the state equation and its derivative with respect to the fractional order. Several numerical tests in one and two dimensions illustrate the theoretical results and show the robustness and applicability of our method

    A general framework for substructuring-based domain decomposition methods for models having nonlocal interactions

    Full text link
    A rigorous mathematical framework is provided for a substructuring-based domain-decomposition approach for nonlocal problems that feature interactions between points separated by a finite distance. Here, by substructuring it is meant that a traditional geometric configuration for local partial differential equation problems is used in which a computational domain is subdivided into non-overlapping subdomains. In the nonlocal setting, this approach is substructuring-based in the sense that those subdomains interact with neighboring domains over interface regions having finite volume, in contrast to the local PDE setting in which interfaces are lower dimensional manifolds separating abutting subdomains. Key results include the equivalence between the global, single-domain nonlocal problem and its multi-domain reformulation, both at the continuous and discrete levels. These results provide the rigorous foundation necessary for the development of efficient solution strategies for nonlocal domain-decomposition methods.Comment: 27 pages, 3 figure

    Convergence Analysis and Numerical Studies for Linearly Elastic Peridynamics with Dirichlet-Type Boundary Conditions

    Full text link
    The nonlocal models of peridynamics have successfully predicted fractures and deformations for a variety of materials. In contrast to local mechanics, peridynamic boundary conditions must be defined on a finite volume region outside the body. Therefore, theoretical and numerical challenges arise in order to properly formulate Dirichlet-type nonlocal boundary conditions, while connecting them to the local counterparts. While a careless imposition of local boundary conditions leads to a smaller effective material stiffness close to the boundary and an artificial softening of the material, several strategies were proposed to avoid this unphysical surface effect. In this work, we study convergence of solutions to nonlocal state-based linear elastic model to their local counterparts as the interaction horizon vanishes, under different formulations and smoothness assumptions for nonlocal Dirichlet-type boundary conditions. Our results provide explicit rates of convergence that are sensitive to the compatibility of the nonlocal boundary data and the extension of the solution for the local model. In particular, under appropriate assumptions, constant extensions yield 12\frac{1}{2} order convergence rates and linear extensions yield 32\frac{3}{2} order convergence rates. With smooth extensions, these rates are improved to quadratic convergence. We illustrate the theory for any dimension d≥2d\geq 2 and numerically verify the convergence rates with a number of two dimensional benchmarks, including linear patch tests, manufactured solutions, and domains with curvilinear surfaces. Numerical results show a first order convergence for constant extensions and second order convergence for linear extensions, which suggests a possible room of improvement in the future convergence analysis
    corecore