2,401 research outputs found

    Optimization and Control of Cyber-Physical Vehicle Systems

    Get PDF
    A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined

    Technical Report: Anytime Computation and Control for Autonomous Systems

    Get PDF
    The correct and timely completion of the sensing and action loop is of utmost importance in safety critical autonomous systems. A crucial part of the performance of this feedback control loop are the computation time and accuracy of the estimator which produces state estimates used by the controller. These state estimators, especially those used for localization, often use computationally expensive perception algorithms like visual object tracking. With on-board computers on autonomous robots being computationally limited, the computation time of a perception-based estimation algorithm can at times be high enough to result in poor control performance. In this work, we develop a framework for co-design of anytime estimation and robust control algorithms while taking into account computation delays and estimation inaccuracies. This is achieved by constructing a perception-based anytime estimator from an off-the-shelf perception-based estimation algorithm, and in the process we obtain a trade-off curve for its computation time versus estimation error. This information is used in the design of a robust predictive control algorithm that at run-time decides a contract for the estimator, or the mode of operation of estimator, in addition to trying to achieve its control objectives at a reduced computation energy cost. In cases where the estimation delay can result in possibly degraded control performance, we provide an optimal manner in which the controller can use this trade-off curve to reduce estimation delay at the cost of higher inaccuracy, all the while guaranteeing that control objectives are robustly satisfied. Through experiments on a hexrotor platform running a visual odometry algorithm for state estimation, we show how our method results in upto a 10% improvement in control performance while saving 5-6% in computation energy as compared to a method that does not leverage the co-design

    Bi-objective Motion Planning Approach for Safe Motions: Application to a Collaborative Robot

    Get PDF
    International audienceAccepted version freely available here: [ http://bit.ly/2qlyjJ6 ] Online version via SpringerLink: [ http://link.springer.com/article/10.1007/s10846-019-01110-1 ] Abstract: This paper presents a new bi-objective safety-oriented path planning strategy for robotic manipulators. Integrated into a sampling-based algorithm, our approach can successfully enhance the task safety by guiding the expansion of the path towards the safest configurations. Our safety notion consists of avoiding dangerous situations, e.g. being very close to the obstacles, human awareness, e.g. being as much as possible in the human vision field, as well as ensuring human safety by being as far as possible from human with hierarchical priority between human body parts. Experimental validations are conducted in simulation and on the real Baxter research robot. They revealed the efficiency of the proposed method, mainly in the case of a collaborative robot sharing the workspace with humans

    System Design, Motion Modelling and Planning for a Recon figurable Wheeled Mobile Robot

    Get PDF
    Over the past ve decades the use of mobile robotic rovers to perform in-situ scienti c investigations on the surfaces of the Moon and Mars has been tremendously in uential in shaping our understanding of these extraterrestrial environments. As robotic missions have evolved there has been a greater desire to explore more unstructured terrain. This has exposed mobility limitations with conventional rover designs such as getting stuck in soft soil or simply not being able to access rugged terrain. Increased mobility and terrain traversability are key requirements when considering designs for next generation planetary rovers. Coupled with these requirements is the need to autonomously navigate unstructured terrain by taking full advantage of increased mobility. To address these issues, a high degree-of-freedom recon gurable platform that is capable of energy intensive legged locomotion in obstacle-rich terrain as well as wheeled locomotion in benign terrain is proposed. The complexities of the planning task that considers the high degree-of-freedom state space of this platform are considerable. A variant of asymptotically optimal sampling-based planners that exploits the presence of dominant sub-spaces within a recon gurable mobile robot's kinematic structure is proposed to increase path quality and ensure platform safety. The contributions of this thesis include: the design and implementation of a highly mobile planetary analogue rover; motion modelling of the platform to enable novel locomotion modes, along with experimental validation of each of these capabilities; the sampling-based HBFMT* planner that hierarchically considers sub-spaces to better guide search of the complete state space; and experimental validation of the planner with the physical platform that demonstrates how the planner exploits the robot's capabilities to uidly transition between various physical geometric con gurations and wheeled/legged locomotion modes

    Fast Model Identification via Physics Engines for Data-Efficient Policy Search

    Full text link
    This paper presents a method for identifying mechanical parameters of robots or objects, such as their mass and friction coefficients. Key features are the use of off-the-shelf physics engines and the adaptation of a Bayesian optimization technique towards minimizing the number of real-world experiments needed for model-based reinforcement learning. The proposed framework reproduces in a physics engine experiments performed on a real robot and optimizes the model's mechanical parameters so as to match real-world trajectories. The optimized model is then used for learning a policy in simulation, before real-world deployment. It is well understood, however, that it is hard to exactly reproduce real trajectories in simulation. Moreover, a near-optimal policy can be frequently found with an imperfect model. Therefore, this work proposes a strategy for identifying a model that is just good enough to approximate the value of a locally optimal policy with a certain confidence, instead of wasting effort on identifying the most accurate model. Evaluations, performed both in simulation and on a real robotic manipulation task, indicate that the proposed strategy results in an overall time-efficient, integrated model identification and learning solution, which significantly improves the data-efficiency of existing policy search algorithms.Comment: IJCAI 1
    • …
    corecore