1,082 research outputs found

    PU-Transformer: Point Cloud Upsampling Transformer

    Full text link
    Given the rapid development of 3D scanners, point clouds are becoming popular in AI-driven machines. However, point cloud data is inherently sparse and irregular, causing major difficulties for machine perception. In this work, we focus on the point cloud upsampling task that intends to generate dense high-fidelity point clouds from sparse input data. Specifically, to activate the transformer's strong capability in representing features, we develop a new variant of a multi-head self-attention structure to enhance both point-wise and channel-wise relations of the feature map. In addition, we leverage a positional fusion block to comprehensively capture the local context of point cloud data, providing more position-related information about the scattered points. As the first transformer model introduced for point cloud upsampling, we demonstrate the outstanding performance of our approach by comparing with the state-of-the-art CNN-based methods on different benchmarks quantitatively and qualitatively

    Patch-based Progressive 3D Point Set Upsampling

    Full text link
    We present a detail-driven deep neural network for point set upsampling. A high-resolution point set is essential for point-based rendering and surface reconstruction. Inspired by the recent success of neural image super-resolution techniques, we progressively train a cascade of patch-based upsampling networks on different levels of detail end-to-end. We propose a series of architectural design contributions that lead to a substantial performance boost. The effect of each technical contribution is demonstrated in an ablation study. Qualitative and quantitative experiments show that our method significantly outperforms the state-of-the-art learning-based and optimazation-based approaches, both in terms of handling low-resolution inputs and revealing high-fidelity details.Comment: accepted to cvpr2019, code available at https://github.com/yifita/P3

    Frequency-Selective Geometry Upsampling of Point Clouds

    Full text link
    The demand for high-resolution point clouds has increased throughout the last years. However, capturing high-resolution point clouds is expensive and thus, frequently replaced by upsampling of low-resolution data. Most state-of-the-art methods are either restricted to a rastered grid, incorporate normal vectors, or are trained for a single use case. We propose to use the frequency selectivity principle, where a frequency model is estimated locally that approximates the surface of the point cloud. Then, additional points are inserted into the approximated surface. Our novel frequency-selective geometry upsampling shows superior results in terms of subjective as well as objective quality compared to state-of-the-art methods for scaling factors of 2 and 4. On average, our proposed method shows a 4.4 times smaller point-to-point error than the second best state-of-the-art PU-Net for a scale factor of 4.Comment: 5 pages, 3 figures, International Conference on Image Processing (ICIP) 202
    • …
    corecore