8,695 research outputs found

    Data-driven Estimation of Origin-Destination Demand and User Cost Functions for the Optimization of Transportation Networks

    Full text link
    In earlier work (Zhang et al., 2016) we used actual traffic data from the Eastern Massachusetts transportation network in the form of spatial average speeds and road segment flow capacities in order to estimate Origin-Destination (OD) flow demand matrices for the network. Based on a Traffic Assignment Problem (TAP) formulation (termed "forward problem"), in this paper we use a scheme similar to our earlier work to estimate initial OD demand matrices and then propose a new inverse problem formulation in order to estimate user cost functions. This new formulation allows us to efficiently overcome numerical difficulties that limited our prior work to relatively small subnetworks and, assuming the travel latency cost functions are available, to adjust the values of the OD demands accordingly so that the flow observations are as close as possible to the solutions of the forward problem. We also derive sensitivity analysis results for the total user latency cost with respect to important parameters such as road capacities and minimum travel times. Finally, using the same actual traffic data from the Eastern Massachusetts transportation network, we quantify the Price of Anarchy (POA) for a much larger network than that in Zhang et al. (2016).Comment: Preprint submitted to The 20th World Congress of the International Federation of Automatic Control, July 9-14, 2017, Toulouse, Franc

    The price of anarchy in transportation networks by estimating user cost functions from actual traffic data

    Full text link
    We have considered a large-scale road network in Eastern Massachusetts. Using real traffic data in the form of spatial average speeds and the flow capacity for each road segment of the network, we converted the speed data to flow data and estimated the origin-destination flow demand matrices for the network. Assuming that the observed traffic data correspond to user (Wardrop) equilibria for different times-of-the-day and days-of-the-week, we formulated appropriate inverse problems to recover the per-road cost (congestion) functions determining user route selection for each month and time-of-day period. In addition, we analyzed the sensitivity of the total user latency cost to important parameters such as road capacities and minimum travel times. Finally, we formulated a system-optimum problem in order to find socially optimal flows for the network. We investigated the network performance, in terms of the total latency, under a user-optimal policy versus a system-optimal policy. The ratio of these two quantities is defined as the Price of Anarchy (POA) and quantifies the efficiency loss of selfish actions compared to socially optimal ones. Our findings contribute to efforts for a smarter and more efficient city

    Detection and optimization problems with applications in smart cities

    Full text link
    This dissertation proposes solutions to a selected set of detection and optimization problems, whose applications are focused on transportation systems. The goal is to help build smarter and more efficient transportation systems, hence smarter cities. Problems with dynamics evolving in two different time-scales are considered: (1) In a fast time-scale, the dissertation considers the problem of detection, especially statistical anomaly detection in real-time. From a theoretical perspective and under Markovian assumptions, novel threshold estimators are derived for the widely used Hoeffding test. This results in a test with a much better ability to control false alarms while maintaining a high detection rate. From a practical perspective, the improved test is applied to detecting non-typical traffic jams in the Boston road network using real traffic data reported by the Waze smartphone navigation application. The detection results can alert the drivers to reroute so as to avoid the corresponding areas and provide the most urgent "targets" to the Transportation department and/or emergency services to intervene and remedy the underlying cause resulting in these jams, thus, improving transportation systems and contributing to the smart city agenda. (2) In a slower time-scale, the dissertation investigates a host of optimization problems, including estimation and adjustment of Origin-Destination (OD) demand, traffic assignment, recovery of travel cost functions, and joint recovery of travel cost functions and OD demand (joint problem). Integrating these problems leads to a data-driven predictive model which serves to diagnose/control/optimize the transportation network. To ensure good accuracy of the predictive model and increase its robustness and consistency, several novel formulations for the travel cost function recovery problem and the joint problem are proposed. A data-driven framework is proposed to evaluate the Price-of-Anarchy (PoA; a metric assessing the degree of congestion under selfish user-centric routing vs. socially-optimal system-centric routing). For the case where the PoA is larger than expected, three viable strategies are proposed to reduce it. To demonstrate the effectiveness and efficiency of the proposed approaches, case-studies are conducted on three benchmark transportation networks using synthetic data and an actual road network (from Eastern Massachusetts (EMA)) using real traffic data. Moreover, to facilitate research in the transportation community, the largest highway subnetwork of EMA has been released as a new benchmark network

    Data-Driven Estimation in Equilibrium Using Inverse Optimization

    Get PDF
    Equilibrium modeling is common in a variety of fields such as game theory and transportation science. The inputs for these models, however, are often difficult to estimate, while their outputs, i.e., the equilibria they are meant to describe, are often directly observable. By combining ideas from inverse optimization with the theory of variational inequalities, we develop an efficient, data-driven technique for estimating the parameters of these models from observed equilibria. We use this technique to estimate the utility functions of players in a game from their observed actions and to estimate the congestion function on a road network from traffic count data. A distinguishing feature of our approach is that it supports both parametric and \emph{nonparametric} estimation by leveraging ideas from statistical learning (kernel methods and regularization operators). In computational experiments involving Nash and Wardrop equilibria in a nonparametric setting, we find that a) we effectively estimate the unknown demand or congestion function, respectively, and b) our proposed regularization technique substantially improves the out-of-sample performance of our estimators.Comment: 36 pages, 5 figures Additional theorems for generalization guarantees and statistical analysis adde

    Dynamic Congestion and Tolls with Mobile Source Emission

    Get PDF
    This paper proposes a dynamic congestion pricing model that takes into account mobile source emissions. We consider a tollable vehicular network where the users selfishly minimize their own travel costs, including travel time, early/late arrival penalties and tolls. On top of that, we assume that part of the network can be tolled by a central authority, whose objective is to minimize both total travel costs of road users and total emission on a network-wide level. The model is formulated as a mathematical program with equilibrium constraints (MPEC) problem and then reformulated as a mathematical program with complementarity constraints (MPCC). The MPCC is solved using a quadratic penalty-based gradient projection algorithm. A numerical study on a toy network illustrates the effectiveness of the tolling strategy and reveals a Braess-type paradox in the context of traffic-derived emission.Comment: 23 pages, 9 figures, 5 tables. Current version to appear in the Proceedings of the 20th International Symposium on Transportation and Traffic Theory, 2013, the Netherland

    A tutorial on recursive models for analyzing and predicting path choice behavior

    Full text link
    The problem at the heart of this tutorial consists in modeling the path choice behavior of network users. This problem has been extensively studied in transportation science, where it is known as the route choice problem. In this literature, individuals' choice of paths are typically predicted using discrete choice models. This article is a tutorial on a specific category of discrete choice models called recursive, and it makes three main contributions: First, for the purpose of assisting future research on route choice, we provide a comprehensive background on the problem, linking it to different fields including inverse optimization and inverse reinforcement learning. Second, we formally introduce the problem and the recursive modeling idea along with an overview of existing models, their properties and applications. Third, we extensively analyze illustrative examples from different angles so that a novice reader can gain intuition on the problem and the advantages provided by recursive models in comparison to path-based ones

    Joint Estimation of OD Demands and Cost Functions in Transportation Networks from Data

    Full text link
    Existing work has tackled the problem of estimating Origin-Destination (OD) demands and recovering travel latency functions in transportation networks under the Wardropian assumption. The ultimate objective is to derive an accurate predictive model of the network to enable optimization and control. However, these two problems are typically treated separately and estimation is based on parametric models. In this paper, we propose a method to jointly recover nonparametric travel latency cost functions and estimate OD demands using traffic flow data. We formulate the problem as a bilevel optimization problem and develop an iterative first-order optimization algorithm to solve it. A numerical example using the Braess Network is presented to demonstrate the effectiveness of our method.Comment: To appear at the Proceedings of the 58th IEEE Conference on Decision and Contro
    corecore