57 research outputs found

    Data-driven calibration of penalties for least-squares regression

    Get PDF
    Penalization procedures often suffer from their dependence on multiplying factors, whose optimal values are either unknown or hard to estimate from the data. We propose a completely data-driven calibration algorithm for this parameter in the least-squares regression framework, without assuming a particular shape for the penalty. Our algorithm relies on the concept of minimal penalty, recently introduced by Birge and Massart (2007) in the context of penalized least squares for Gaussian homoscedastic regression. On the positive side, the minimal penalty can be evaluated from the data themselves, leading to a data-driven estimation of an optimal penalty which can be used in practice; on the negative side, their approach heavily relies on the homoscedastic Gaussian nature of their stochastic framework. The purpose of this paper is twofold: stating a more general heuristics for designing a data-driven penalty (the slope heuristics) and proving that it works for penalized least-squares regression with a random design, even for heteroscedastic non-Gaussian data. For technical reasons, some exact mathematical results will be proved only for regressogram bin-width selection. This is at least a first step towards further results, since the approach and the method that we use are indeed general

    Data driven estimation of Laplace-Beltrami operator

    Get PDF
    Approximations of Laplace-Beltrami operators on manifolds through graph Lapla-cians have become popular tools in data analysis and machine learning. These discretized operators usually depend on bandwidth parameters whose tuning remains a theoretical and practical problem. In this paper, we address this problem for the unnormalized graph Laplacian by establishing an oracle inequality that opens the door to a well-founded data-driven procedure for the bandwidth selection. Our approach relies on recent results by Lacour and Massart [LM15] on the so-called Lepski's method

    Adaptive non-asymptotic confidence balls in density estimation

    Full text link
    We build confidence balls for the common density ss of a real valued sample X1,...,XnX_1,...,X_n. We use resampling methods to estimate the projection of ss onto finite dimensional linear spaces and a model selection procedure to choose an optimal approximation space. The covering property is ensured for all n≥2n\geq2 and the balls are adaptive over a collection of linear spaces

    Estimator selection: a new method with applications to kernel density estimation

    Get PDF
    Estimator selection has become a crucial issue in non parametric estimation. Two widely used methods are penalized empirical risk minimization (such as penalized log-likelihood estimation) or pairwise comparison (such as Lepski's method). Our aim in this paper is twofold. First we explain some general ideas about the calibration issue of estimator selection methods. We review some known results, putting the emphasis on the concept of minimal penalty which is helpful to design data-driven selection criteria. Secondly we present a new method for bandwidth selection within the framework of kernel density density estimation which is in some sense intermediate between these two main methods mentioned above. We provide some theoretical results which lead to some fully data-driven selection strategy

    Bandwidth selection in kernel empirical risk minimization via the gradient

    Get PDF
    In this paper, we deal with the data-driven selection of multidimensional and possibly anisotropic bandwidths in the general framework of kernel empirical risk minimization. We propose a universal selection rule, which leads to optimal adaptive results in a large variety of statistical models such as nonparametric robust regression and statistical learning with errors in variables. These results are stated in the context of smooth loss functions, where the gradient of the risk appears as a good criterion to measure the performance of our estimators. The selection rule consists of a comparison of gradient empirical risks. It can be viewed as a nontrivial improvement of the so-called Goldenshluger-Lepski method to nonlinear estimators. Furthermore, one main advantage of our selection rule is the nondependency on the Hessian matrix of the risk, usually involved in standard adaptive procedures.Comment: Published at http://dx.doi.org/10.1214/15-AOS1318 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore