60 research outputs found

    Feature-Rich Audio Model Inversion for Data-Free Knowledge Distillation Towards General Sound Classification

    Full text link
    Data-Free Knowledge Distillation (DFKD) has recently attracted growing attention in the academic community, especially with major breakthroughs in computer vision. Despite promising results, the technique has not been well applied to audio and signal processing. Due to the variable duration of audio signals, it has its own unique way of modeling. In this work, we propose feature-rich audio model inversion (FRAMI), a data-free knowledge distillation framework for general sound classification tasks. It first generates high-quality and feature-rich Mel-spectrograms through a feature-invariant contrastive loss. Then, the hidden states before and after the statistics pooling layer are reused when knowledge distillation is performed on these feature-rich samples. Experimental results on the Urbansound8k, ESC-50, and audioMNIST datasets demonstrate that FRAMI can generate feature-rich samples. Meanwhile, the accuracy of the student model is further improved by reusing the hidden state and significantly outperforms the baseline method.Comment: Accepted by ICASSP 2023. International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023

    Data-Free Backbone Fine-Tuning for Pruned Neural Networks

    Full text link
    Model compression techniques reduce the computational load and memory consumption of deep neural networks. After the compression operation, e.g. parameter pruning, the model is normally fine-tuned on the original training dataset to recover from the performance drop caused by compression. However, the training data is not always available due to privacy issues or other factors. In this work, we present a data-free fine-tuning approach for pruning the backbone of deep neural networks. In particular, the pruned network backbone is trained with synthetically generated images, and our proposed intermediate supervision to mimic the unpruned backbone's output feature map. Afterwards, the pruned backbone can be combined with the original network head to make predictions. We generate synthetic images by back-propagating gradients to noise images while relying on L1-pruning for the backbone pruning. In our experiments, we show that our approach is task-independent due to pruning only the backbone. By evaluating our approach on 2D human pose estimation, object detection, and image classification, we demonstrate promising performance compared to the unpruned model. Our code is available at https://github.com/holzbock/dfbf.Comment: Accpeted for presentation at the 31st European Signal Processing Conference (EUSIPCO) 2023, September 4-8, 2023, Helsinki, Finlan

    Data-Free Neural Architecture Search via Recursive Label Calibration

    Full text link
    This paper aims to explore the feasibility of neural architecture search (NAS) given only a pre-trained model without using any original training data. This is an important circumstance for privacy protection, bias avoidance, etc., in real-world scenarios. To achieve this, we start by synthesizing usable data through recovering the knowledge from a pre-trained deep neural network. Then we use the synthesized data and their predicted soft-labels to guide neural architecture search. We identify that the NAS task requires the synthesized data (we target at image domain here) with enough semantics, diversity, and a minimal domain gap from the natural images. For semantics, we propose recursive label calibration to produce more informative outputs. For diversity, we propose a regional update strategy to generate more diverse and semantically-enriched synthetic data. For minimal domain gap, we use input and feature-level regularization to mimic the original data distribution in latent space. We instantiate our proposed framework with three popular NAS algorithms: DARTS, ProxylessNAS and SPOS. Surprisingly, our results demonstrate that the architectures discovered by searching with our synthetic data achieve accuracy that is comparable to, or even higher than, architectures discovered by searching from the original ones, for the first time, deriving the conclusion that NAS can be done effectively with no need of access to the original or called natural data if the synthesis method is well designed.Comment: ECCV 202

    Perception Imitation: Towards Synthesis-free Simulator for Autonomous Vehicles

    Full text link
    We propose a perception imitation method to simulate results of a certain perception model, and discuss a new heuristic route of autonomous driving simulator without data synthesis. The motivation is that original sensor data is not always necessary for tasks such as planning and control when semantic perception results are ready, so that simulating perception directly is more economic and efficient. In this work, a series of evaluation methods such as matching metric and performance of downstream task are exploited to examine the simulation quality. Experiments show that our method is effective to model the behavior of learning-based perception model, and can be further applied in the proposed simulation route smoothly
    • …
    corecore